[1] RIZWAN M, WAN W, CERVANTES O, et al. Using location-based social media data to observe check-in behavior and gender difference: bringing Weibo data into play[J]. ISPRS International Journal of Geo-Information, 2018, 7(5): 196.
[2] LIU C, LIU J, SHENGHUA X, et al. A spatiotemporal dilated convolutional generative network for point-of-interest recom-mendation[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 113.
[3] SUN H, YANG C, DENG L, et al. PeriodicMove: shift-aware human mobility recovery with graph neural network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Nov 1-5, 2021. New York: ACM, 2021: 1734-1743.
[4] RAHMANI H, NAGHIAEI M, TOURANI A, et al. Exploring the impact of temporal bias in point-of-interest recommendation[C]//Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 598-603.
[5] WEN W, LIANG F. Deep structured state learning for next-period recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 680-692.
[6] LIU J, ZHANG Z, YANG C, et al. Personalized city region of interests recommendation method based on city block and check-in data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1797-1806.
[7] CHENG C, YANG H, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of the 2012 AAAI Conference on Artificial Intelligence, Jul 22-26, 2012. Menlo Park:AAAI, 2012: 17-23.
[8] 刘旸, 吴安波, 李慧斌. LBSN中利用深度学习的POI推荐方法[J]. 计算机工程与设计, 2022, 43(10): 2926-2934.
LIU Y, WU A B, LI H B. POI recommendation method using deep learning in LBSN[J]. Computer Engineering and Design, 2022, 43(10): 2926-2934.
[9] ISLAM M, MOHAMMAD M, DAS S, et al. A survey on deep learning based point-of-interest (POI) recommendations[J]. Neurocomputing, 2022, 472: 306-325.
[10] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances?in?Neural?Information?Processing?Systems?26, Lake?Tahoe, Dec?5-8,?2013: 3111-3119.
[11] YE M, YIN P, LEE W, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, Jul 24-28, 2011. New York: ACM, 2011: 325-334.
[12] LIAN D, ZHAO C, XIE X, et al. GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 831-840.
[13] LI X, CONG G, LI X, et al. Rank-GeoFM: a ranking based geographical factorization method for point of interest recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug 9-13, 2015. New York: ACM, 2015: 433-442.
[14] HE J, LI X, LIAO L, et al. Inferring a personalized next point-of-interest recommendation model with latent behavior patterns[C]//Proceedings of the 2016 AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI,2016: 137-143.
[15] MA C, ZHANG Y, WANG Q, et al. Point-of-interest recommendation: exploiting self-attentive autoencoders with neighbor-aware influence[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Oct 22-26, 2018. New York: ACM, 2018: 697-706.
[16] YUAN Q, CONG G, MA Z, et al. Time-aware point-of-interest recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 28-Aug 1, 2013. New York: ACM, 2013: 363-372.
[17] RENDLE S, FREUDENTHALER C, SCHMIDT L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web, Apr 26-30, 2010. New York: ACM, 2010: 811-820.
[18] ZHU Y, LI H, LIAO Y, et al. What to do next: modeling user behaviors by time-LSTM[C]//Proceedings of the 17th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3602-3608.
[19] GAO Q, HONG J, XU X, et al. Predicting human mobility via self-supervised disentanglement learning[EB/OL]. [2023-03-04]. https://arxiv.org/abs/2211.09625.
[20] LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 194-200.
[21] KONG D, WU F. HST-LSTM: a hierarchical spatial-temporal long-short term memory network for location prediction[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 2341-2347.
[22] ZHAO P, LUO A, LIU Y, et al. Where to go next: a spatio-temporal gated network for next POI recommendation[J].IEEE Transaction on Knowledge and Data Engineering, 2020, 34(5): 2512-2524.
[23] FENG J, LI Y, ZHANG C, et al. DeepMove: predicting human mobility with attentional recurrent networks[C]//Proceedings of the 2018 World Wide Web Conference, Apr 23-27, 2018. New York: ACM, 2018: 1459-1468.
[24] LUO Y, LIU Q, LIU Z. STAN: spatio-temporal attention network for next location recommendation[C]//Proceedings of the Web Conference 2021, Apr 19-23, 2021. New York:ACM, 2021: 2177-2185.
[25] WANG E, JIANG Y, XU Y, et al. Spatial-temporal interval aware sequential POI recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering, May 9-13, 2022. Piscataway: IEEE, 2022: 2086-2098.
[26] LIANG D, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference, Apr 23-27, 2018. New York: ACM, 2018: 689-698. |