[1] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[2] 钱冲, 常冬霞. 图拉普拉斯正则化稀疏变换学习图像去噪算法[J]. 计算机工程与应用, 2022, 58(5): 232-239.
QIAN C, CHANG D?X. Image denoising algorithm based on graph Laplacian regularized sparse transform learning[J]. Computer Engineering and Applications, 2022, 58(5): 232-239.
[3] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[4] ZHANG K, ZUO W M, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
[5] GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 1712-1722.
[6] 丁岳皓, 吴昊, 孔凤玲, 等. 面向真实图像噪声的两阶段盲去噪[J]. 中国图象图形学报, 2023, 28(7): 2026-2036.
DING Y H, WU H, KONG F L, et al. A dual of real image noise-related blind denoising technique[J]. Journal of Image and Graphics, 2023, 28(7): 2026-2036.
[7] WU W C, LIU S J, ZHOU Y, et al. Dual residual attention network for image denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2305.04269.
[8] WU W C, LV G N, DUAN Y Y, et al. DCANet: dual convolutional neural network with attention for image blind denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2304.01498.
[9] 曲海成, 申磊. 面向目标检测的SAR图像去噪和语义增强[J]. 光子学报, 2022, 51(4): 329-343.
QU H C, SHEN L. SAR image denoising and semantic enhancement for object detection[J]. Acta Photonica Sinica, 2022, 51(4): 329-343.
[10] HUANG J, LIU X, PAN Y, et al. CasaPuNet: channel affine self-attention based progressively updated network for real image denoising[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 9145-9156.
[11] MOU C, ZHANG J, FAN X, et al. COLA-Net: collaborative attention network for image restoration[J]. IEEE Transactions on Multimedia, 2022, 24: 1366-1377.
[12] JIANG B, LU Y, WANG J, et al. Deep image denoising with adaptive priors[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5124-5136.
[13] 耿玉标, 岳志远, 闫麒名, 等. 产品表面缺陷检测的多通路阈值收缩融合网络[J]. 计算机工程与应用, 2023, 59(10): 162-170.
GENG Y B, YUE Z Y, YAN Q M, et al. Multi-stream thres-hold shrinkage and fusion network for product surface defect detection[J]. Computer Engineering and Applications, 2023, 59(10): 162-170.
[14] JIANG J D, ZHENG L N, LUO F, et al. RedNet: residual encoder-decoder network for indoor RGB-D semantic segmentation[EB/OL]. [2023-06-29]. https://arxiv.org/abs/1806. 01054.
[15] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 14821-14831.
[16] JIANG Y Q, ZHANG C, LIU J. CS-PCN: context-space progressive collaborative network for image denoising[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2305.10146.
[17] POTLAPALLI V, ZAMIR S W, KHAN S, et al. PromptIR: prompting for all-in-one blind image restoration[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2306.13090.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[19] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 10012-10022.
[20] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 1833-1844.
[21] WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 17683-17693.
[22] YAO C, JIN S, LIU M Q, et al. Dense residual transformer for image denoising[J]. Electronics, 2022, 11(3): 418.
[23] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5- 9, 2015. Cham: Springer, 2015: 234-241.
[24] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-06-29]. https://arxiv.org/abs/2010.11929.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[27] CHARBONNIER P, BLANC-FERAUD L, AUBERT G, et al. Two deterministic half-quadratic regularization algorithms for computed imaging[C]//Proceedings of the 1st International Conference on Image Processing, Austin, Nov 13-16, 1994. Piscataway: IEEE, 1994: 168-172.
[28] HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801.
[29] ASSESSMENT I Q. From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 770-778.
[30] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 1692-1700.
[31] PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1586-1595.
[32] LEBRUN M, COLOM M, MOREL J M. The noise clinic: a blind image denoising algorithm[J]. Image Processing on Line, 2015, 5: 1-54.
[33] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 492-511.
[34] ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3155-3164.
[35] YUE Z S, YONG H W, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 1688-1699.
[36] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: real image restoration via improved data synthesis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2696-2705.
[37] CHENG S, WANG Y Z, HUANG H B, et al. NBNet: noise basis learning for image denoising with subspace projection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 4896-4906. |