[1] 张莹莹, 钱胜胜, 方全, 等. 基于多模态知识感知注意力机制的问答方法[J]. 计算机研究与发展, 2020, 57(5): 1037-1045.
ZHANG Y Y, QIAN S S, FANG Q, et al. Question-answering method based on multimodal knowledge perception attention mechanism[J]. Journal of Computer Research and Development, 2020, 57(5): 1037-1045.
[2] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-15.
[3] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 17-19, 2019. Stroudsburg: ACL, 2019: 1-15.
[4] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551.
[5] 钱锦, 黄荣涛, 邹博伟, 等. 基于多任务学习的生成式阅读理解[J]. 中文信息学报, 2021, 35(12): 103-111.
QIAN J, HUANG R T, ZOU B W, et al. Generative reading comprehension based on multitask learning[J]. Journal of Chinese Information Processing, 2021, 35(12): 103-111.
[6] 梅佳蒙, 任延珍, 王丽娜. 安全性可控的生成式文本隐写算法[J]. 网络与信息安全学报, 2022, 8(3): 53-65.
MEI J M, REN Y Z, WANG L N. Secure and controllable generative text steganography algorithm[J]. Journal of Cybersecurity and Information Security, 2022, 8(3): 53-65.
[7] 刘家, 卢永美, 何东, 等. 面向语义多样性的对话生成模型[J]. 小型微型计算机系统, 2022, 43(10): 2028-2034.
LIU J, LU Y M, HE D, et al. Dialogue generation model for semantic diversity[J]. Journal of Chinese Computer Systems, 2022, 43(10): 2028-2034.
[8] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Nature, 2020, 581(7809): 1-9.
[9] KAPLAN J, MCCANDLISH S, HENIGHAN T, et al. Scaling laws for neural language models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-22, 2020. Stroudsburg: ACL, 2020: 6174-6184.
[10] HOFFMANN J, BORGEAUD S, MENSCH A, et al. Training compute-optimal large language models[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, Dec 6-10, 2022. Stroudsburg: ACL, 2022: 7-11.
[11] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, Jul 11-27, 2022. Stroudsburg: ACL, 2022: 1837-1851.
[12] GLAESE A, MCALEESE N, TR?BACZ M, et al. Improving alignment of dialogue agents via targeted human judgements[C]//Proceedings of the 2022 Conference of the North Amer-ican Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, Jul 11-27, 2022. Stroudsburg: ACL, 2022: 1746-1757.
[13] KNOX W B, STONE P. Augmenting reinforcement learning with human feedback[C]//Proceedings of the 2011 Workshop on New Developments in Imitation Learning, Scotland, Oct 11-28, 2011. New York: ACM, 2011: 1-6.
[14] THOPPILAN R, DE FREITAS D, HALL J, et al. LaMDA: language models for dialog applications[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, Jul 11-27, 2022. Stroudsburg: ACL, 2022: 364-367.
[15] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, Dec 6-10, 2022. Stroudsburg: ACL, 2022: 15-21.
[16] BAI Y, KADAVATH S, KUNDU S, et al. Constitutional AI: harmlessness from AI feedback[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2212.08073.
[17] SMITH S, PATWARY M, NORICK B, et al. Using deepspeed and megatron to train megatron-turing NLG 530B, a large-scale generative language model[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2201.11990.
[18] DU Z, QIAN Y, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, May 7-15, 2022. Strouds-burg: ACL, 2022: 320-335.
[19] SUN Y, WANG S, FENG S, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2107.02137.
[20] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. OpenAI Blog, 2018, 1(8): 9.
[21] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[22] SCHICK T, SCHüTZE H. Exploiting cloze questions for few shot text classification and natural language inference[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun 8-18, 2021. Stroudsburg: ACL, 2021: 3295-3308.
[23] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the 36th International Conference on Machine Learning, Long Bearch, Jun 10-15, 2019. New York: ACM, 2019: 2790-2799.
[24] REBUFFI S A, BILEN H, VEDALDI A. Learning multiple visual domains with residual adapters[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 2958-2966.
[25] LI B, WANG Z, CHEN J, et al. Training neural networks with low-precision model memory[C]//Proceedings of the 17th International Conference on Learning Representations, Seattle, Sep 22-29, 2022. Stroudsburg: ACL, 2022: 5223-5232.
[26] DUBOIS Y, LI X, TAORI R, et al. Alpacafarm: a simulation framework for methods that learn from human feedback[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2305.14387.
[27] LIU H, LI Z, HALL D, et al. Sophia: a scalable stochastic second-order optimizer for language model pre-training[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2305.14342.
[28] LI C Y, FARKHOOR H, LIU R, et al. Measuring the intrinsic dimension of objective landscapes[C]//Proceedings of the 2018 International Conference on Learning Representations, Apr 30-May 3, 2018: 1-15.
[29] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[C]//Proceedings of the 10th International Conference on Learning Representations, Apr 25-29, 2021: 1-16.
[30] DETTMERS T, PAGNONI A, HOLTZMAN A, et al. QLoRA: efficient finetuning of quantized LLMs[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2305.14314.
[31] AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 11-15, 2020. Stroudsburg: ACL, 2020: 2532-2545.
[32] SUN Z, WANG X, TAY Y, et al. Recitation-augmented langu-age models[EB/OL]. [2023-05-25]. https://doi.org/10.48550/arXiv.2210.01296.
[33] LI X L, LIANG P. Prefix-tuning: optimizing continuous prompts for generation[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 7-12, 2021. Stroudsburg: ACL, 2021: 4582-4597.
[34] LESTER B, AL-RFOU R, CONSTANT N. The power of scale for parameter-efficient prompt tuning[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Nov 11-16, 2021. Stroudsburg: ACL, 2021: 3045-3059.
[35] SUNG Y L, CHO J, BANSAL M. LST: ladder side-tuning for parameter and memory efficient transfer learning[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 34-46.
[36] WARSTADT A, SINGH A, BOWMAN S R. Neural network acceptability judgments[J]. Transactions of the Association for Computational Linguistics, 2019, 7: 625-641.
[37] SOCHER R, PERELYGIN A, WU J, et al. Recursive deep models for semantic compositionality over a sentiment treebank[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Oct 1-13, 2013. Stroudsburg: ACL, 2013: 1631-1642.
[38] DOLAN W B, BROCKETT C. Automatically constructing a corpus of sentential paraphrases[C]//Proceedings of the 3rd International Workshop on Paraphrasing, Beijing, Sep 12-13, 2005. Berlin, Heidelberg: Springer, 2005: 92-98.
[39] WILLIAMS A, NANGIA N, BOWMAN S. A broad-coverage challenge corpus for sentence understanding through inference[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 27-19, 2018. Stroudsburg: ACL, 2018: 1112-1122.
[40] WANG A, SINGH A, MICHAEL J, et al. GLUE: a multi-task benchmark and analysis platform for natural language understanding[C]//Proceedings of the 2018 Empirical Methods in Natural Language Processing Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Brussels, Nov 18-21, 2018. Stroudsburg: ACL, 2018: 353-355.
[41] DAGAN I, GLICKMAN O, MAGNINI B. The PASCAL recognising textual entailment challenge[C]//Proceedings of the 2006 Machine Learning Challenges Workshop, Berlin, Jun 17-19, 2006. Berlin, Heidelberg: Springer, 2006: 177-190.
[42] CER D, DIAB M, AGIRRE E, et al. SemEval-2017 task 1: semantic textual similarity multilingual and crosslingual focused evaluation[C]//Proceedings of the 11th International Workshop on Semantic Evaluation, Vancouver, Aug 19-23, 2017. Stroudsburg: ACL, 2017: 1-14. |