[1] FARAHMAND H, LIU X M, DONG S, et al. A network observability framework for sensor placement in flood control networks to improve flood situational awareness and risk management[J]. Reliability Engineering & System Safety, 2022, 221: 108366.
[2] RICHA A, HANACHI C, STOLF P. Simulating and analyzing crowdsourcing impacts in flood management: a geo-spatial agent-based approach[C]//Proceedings of the 2023 International Conference on Advanced Information Systems Engineering, Zaragoza, Jun 12-16, 2023. Cham: Springer, 2023: 107-122.
[3] KLIPALO E, BESHARAT M, KURIQI A. Full-scale interface friction testing of geotextile-based flood defence structures[J]. Buildings, 2022, 12(7): 990.
[4] NIE Y, HUANG N, PENG J J, et al. Research on the constru-ction and application of knowledge graph in the ceramic field based on natural language processing[J]. International Journal on Semantic Web and Information Systems, 2023, 19(1): 1-20.
[5] HANG T T, FENG J, YAN L, et al. Joint extraction of entities and relations using multi-label tagging and relational alignment[J]. Neural Computing and Applications, 2022, 34(8): 6397-6412.
[6] WANG Z Y, SONG Z P, YU G, et al. An ontology for Chinese government archives knowledge representation and reasoning[J]. IEEE Access, 2017, 9(1): 130199-130211.
[7] LIU G, ZHANG H W. An ontology constructing technology oriented on massive social security policy documents[J]. Cognitive Systems Research, 2020, 60: 97-105.
[8] ZHUANG L, SCHOUTEN K, FRASINCAR F. SOBA: semi-automated ontology builder for aspect-based sentiment analysis[J]. Journal of Web Semantics, 2020, 60: 100544-100563.
[9] AIPIZAR-CHACON I, SOSNOVSKY S. What’s in an index: extracting domain-specific knowledge graphs from text-books[C]//Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 966-976.
[10] LIU P F, QIAN L, ZHAO X W, et al. The construction of knowledge graphs in the aviation assembly domain based on a joint knowledge extraction model[J]. IEEE Access, 2023, 11: 26483-26495.
[11] 付雷杰, 曹岩, 白瑀, 等. 国内垂直领域知识图谱发展现状与展望[J]. 计算机应用研究, 2021, 38(11): 3201-3214.
FU L J, CAO Y, BAI Y, et al. Development status and prospect of vertical domain knowledge graph in China[J]. Application Research of Computers, 2021, 38(11): 3201-3214.
[12] 黄培馨, 赵翔, 方阳, 等. 融合对抗训练的端到端知识三元组联合抽取[J]. 计算机研究与发展, 2019, 56(12): 2536-2548.
HANG P X, ZHAO X, FANG Y, et al. End-to-end knowledge triplet extraction combined with adversarial training[J]. Journal of Computer Research and Development, 2019, 56(12): 2536-2548.
[13] SUN Y, LI Z. Ontology-based domain knowledge representation[C]//Proceedings of the 2009 4th International Conference on Computer Science & Education, Nanning, Jul 25-28, 2009. Piscataway: IEEE, 2009: 174-177.
[14] DANG F, TANG J, LI S. MOOC-KG: a MOOC knowledge graph for cross-platform online learning resources[C]//Proceedings of the 2019 International Conference on Electronics Information and Emergency Communication, Beijing, Aug 5, 2019. Piscataway: IEEE, 2019: 1-8.
[15] Al-ASWADI F, CHAN H, GAN K. From ontology to know-ledge graph trend: ontology as foundation layer for knowledge graph[C]//Proceedings of the 2022 Iberoamerican Conference on Knowledge Graphs and Semantic Web, Madrid, Nov 21-23, 2022. Cham: Springer, 2022: 330-340.
[16] LIN J J, ZHAO Y Z, HUANG W Y, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33(2): 681-690.
[17] KALFA M, YETIM S Y, ATALIK A, et al. Reliable extraction of semantic information and rate of innovation estimation for graph signals[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 119-140.
[18] CAO P F, WU J. GraphRevisedIE: multimodal information extraction with graph-revised network[J]. Pattern Recognition, 2023, 140: 109542.
[19] SIAHAAN D, RAHARJANA I K, FATICHAH C. User story extraction from natural language for requirements elicitation: identify software-related information from online news[J]. Information and Software Technology, 2023, 158: 107195.
[20] RAHARJANA I K, SIAHAAN D, FATICHAH C. User stories and natural language processing: a systematic literature review[J]. IEEE Access, 2021, 9: 53811-53826.
[21] OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[J]. arXiv:2203.02155, 2022.
[22] ZHAO W X, ZHOU K, LI J Y, et al. A survey of large language models[J]. arXiv:2303.18223, 2023.
[23] MOHAMED Y L, LOBNA H, LOTFI B R. Information extraction from electronic medical documents: state of the art and future research directions[J]. Knowledge and Information Systems, 2023, 65(2): 463-516.
[24] MIN B N, ROSS H, SULEM E, et al. Recent advances in natural language processing via large pre-trained language models: a survey[J]. arXiv:2111.01243, 2021.
[25] WEBSON A, PAVLICK E. Do prompt based models really understand the meaning of their prompts[J]. arXiv:2109.01247, 2021.
[26] JACOBS G, HOSTE V. SENTiVENT: enabling supervised information extraction of company-specific events in economic and financial news[J]. Language Resources and Evaluation, 2022, 56(1): 225-257.
[27] LI L W, WU Y P, HUANG Y P, et al. Optimized apriori algorithm for deformation response analysis of landslide hazards[J]. Computers and Geosciences, 2023, 170: 105261.
[28] TANG H, FENG J, ZHOU S. Generic ontologies for digital watersheds[C]//Proceedings of the 4th International Conference on Big Data Economy and Information Management, Sanya, Dec 22-24, 2023.
[29] LI Y, ZAKHOZHYI V, ZHU D, et al. Domain specific know-ledge graphs as a service to the public: powering social-impact funding in the US[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2793-2801.
[30] HENDRIK S, ALBERT W, VICTOR S, et al. Interactive and visual prompt engineering for ad-hoc task adaptation with large language models[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 29(1): 1146-1156.
[31] WANG Y, SHEN S, LIM B Y. RePrompt: automatic prompt editing to refine AI-generative art towards precise expressions[C]//Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. New York: ACM, 2023: 1-29.
[32] MIN S, LYU X X, HOLTZMAN A, et al. Rethinking the role of demonstrations: what makes in-context learning work[J]. arXiv:2202.12837, 2022.
[33] RAZEGHI Y, IV R L L, GARDNER M, et al. Impact of pretraining term frequencies on few-shot reasoning[J]. arXiv:2202.07206, 2022.
[34] 杨玉基, 许斌, 胡家威, 等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018, 29(10): 2931-2947.
YANG Y J, XU B, HU J W, et al. Accurate and efficient method for constructing domain knowledge graph[J]. Journal of Software, 2018, 29(10): 2931-2947.
[35] JIANG L, SHI J Y, WANG C Y. Multi-ontology fusion and rule development to facilitate automated code compliance checking using BIM and rule-based reasoning[J]. Advanced Engineering Informatics, 2022, 51: 101449. |