[1] LI Q, LIN X D. Efficient and privacy-preserving speaker recognition for cybertwin-driven 6G[J]. IEEE Internet of Things Journal, 2021, 8(22): 16195-16206.
[2] ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
[3] BI R W, XIONG J B, TIAN Y L, et al. Achieving lightweight and privacy-preserving object detection for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2023, 10(3): 2314-2329.
[4] XIONG J B, BI R W, TIAN Y L, et al. Toward lightweight, privacy-preserving cooperative object classification for connected autonomous vehicles[J]. IEEE Internet of Things Journal, 2022, 9(4): 2787-2801.
[5] 张晓旭, 马志强, 刘志强, 等. Transformer在语音识别任务中的研究现状与展望[J]. 计算机科学与探索, 2021, 15(9): 1578-1594.
ZHANG X X, MA Z Q, LIU Z Q, et al. Research status and prospect of transformer in speech recognition[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1578-1594.
[6] GARTENBERG C. Apple apologizes for Siri audio recordings, announces privacy changes going forward[Z]. 2019.
[7] TUROW J. Voice intelligence and the future of engagement metrics on commercial platforms[M]//The economic lives of platforms. [S.l.]: Bristol University Press, 2024: 73-87.
[8] 陈学先, 李宏发, 李霄铭, 等. 基于同态加密的能源大数据安全系统[J]. 福建师范大学学报(自然科学版), 2023, 39(2): 9-25.
CHEN X X, LI H F, LI X M, et al. Secure energy big data system based on homomorphic encryption[J]. Journal of Fujian Normal University (Natural Science Edition), 2023, 39(2): 9-25.
[9] 赵敏, 田有亮, 熊金波, 等. 基于同态加密的神经网络模型训练方法[J]. 计算机科学, 2023, 50(5): 372-381.
ZHAO M, TIAN Y L, XIONG J B, et al. Neural network model training method based on homomorphic encryption[J]. Computer Science, 2023, 50(5): 372-381.
[10] 钟洋, 毕仁万, 颜西山, 等. 支持隐私保护训练的高效同态神经网络[J]. 计算机应用, 2022, 42(12): 3792-3800.
ZHONG Y, BI R W, YAN X S, et al. Efficient homomorphic neural network supporting privacy-preserving training[J]. Journal of Computer Applications, 2022, 42(12): 3792-3800.
[11] 王馨雅, 华光, 江昊, 等. 深度学习模型的版权保护研究综述[J]. 网络与信息安全学报, 2022, 8(2): 1-14.
WANG X Y, HUA G, JIANG H, et al. Survey on intellectual property protection for deep learning model[J]. Chinese Journal of Network and Information Security, 2022, 8(2): 1-14.
[12] DOWLIN N, GILAD-BACHRACH R, LAINE K, et al. Cryptonets: applying neural networks to encrypted data with high throughput and accuracy[C]//Proceedings of the 33rd International Conference on Machine Learning. New York: PMLR, 2016: 201-210.
[13] ZHANG S X, GONG Y F, YU D. Encrypted speech recognition using deep polynomial networks[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 5691-5695.
[14] RAHULAMATHAVAN Y. Privacy-preserving similarity calculation of speaker features using fully homomorphic encryption[EB/OL]. [2023-10-08]. https://arxiv.org/abs/2202.07994.
[15] ELWORTH D L, KIM S. HEKWS: privacy-preserving convolutional neural network-based keyword spotting with a ciphertext packing technique[C]//Proceedings of the 2022 IEEE 24th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2022: 1-6.
[16] BOURA C, GAMA N, GEORGIEVA M, et al. CHIMERA: combining ring-LWE-based fully homomorphic encryption schemes[J]. Journal of Mathematical Cryptology, 2020,14(1): 316-338.
[17] CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE[C]//Advances in Cryptology: Proceedings of the 23rd International Conference on the Theory and Application of Cryptology and Information Security. Cham: Springer, 2017: 377-408.
[18] DUCAS L, MICCIANCIO D. FHEW: bootstrapping homomorphic encryption in less than a second[C]//Advances in Cryptology-EUROCRYPT 2015: Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Heidelberg: Springer, 2015: 617-640.
[19] FAN J F, VERCAUTEREN F. Somewhat practical fully homomorphic encryption[J]. IACR Cryptol EPrint Arch, 2024, 2012: 144.
[20] BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V. (leve-led) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory, 2014, 6(3): 1-36.
[21] CHEON J H, KIM A, KIM M,et al. Homomorphic encryption for arithmetic of approximate numbers[C]//Proceedings of the 23rd International Conference on the Theory and Applications of Cryptology and Information Security.Cham: Springer, 2017: 409-437.
[22] LU W J, HUANG Z C, HONG C, et al. PEGASUS: bridging polynomial and non-polynomial evaluations in homomorphic encryption[C]//Proceedings of the 2021 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2021: 1057-1073.
[23] CHOU E, BEAL J, LEVY D, et al. Faster CryptoNets: leveraging sparsity for real-world encrypted inference[EB/OL]. [2023-10-08]. https://arxiv.org/abs/1811.09953.
[24] AL BADAWI A, JIN C, LIN J, et al. Towards the AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1330-1343.
[25] HESAMIFARD E, TAKABI H, GHASEMI M, et al. Privacy-preserving machine learning in cloud[C]//Proceedings of the 2017 on Cloud Computing Security Workshop. New York: ACM, 2017: 39-43.
[26] LIU X M, QIN B D, DENG R H, et al. An efficient privacy-preserving outsourced computation over public data[J]. IEEE Transactions on Services Computing, 2017, 10(5): 756-770.
[27] XIONG J B, BI R W, ZHAO M F, et al. Edge-assisted privacy-preserving raw data sharing framework for connected autonomous vehicles[J]. IEEE Wireless Communications, 2020, 27(3): 24-30.
[28] BI R W, GUO D L, ZHANG Y Y, et al. Outsourced and privacy-preserving collaborative k-prototype clustering for mixed data via additive secret sharing[J]. IEEE Internet of Things Journal, 2023, 10(18): 15810-15821.
[29] 毕仁万, 陈前昕, 熊金波, 等. 面向深度神经网络的安全计算协议设计方法[J]. 网络与信息安全学报, 2020, 6(4): 130-139.
BI R W, CHEN Q X, XIONG J B, et al. Design method of secure computing protocol for deep neural network[J]. Chinese Journal of Network and Information Security, 2020, 6(4): 130-139.
[30] HAN K, HONG S, CHEON J H, et al. Logistic regression on homomorphic encrypted data at scale[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2019: 9466-9471.
[31] VASUDEVAN A, ANDERSON A, GREGG D. Parallel multi channel convolution using general matrix multiplication[C]//Proceedings of the 2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processors. Piscataway: IEEE, 2017: 19-24.
[32] TANG R, LIN J. Honk: a PyTorch reimplementation of convolutional neural networks for keyword spotting[EB/OL]. [2023-10-08]. https://arxiv.org/abs/1710.06554. |