[1] 罗逸轩, 刘建华, 胡任远, 等. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(9): 2151-2162.
LUO Y X, LIU J H, HU R Y, et al. Particle swarm optimization combined with Q-learning of experience sharing strategy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2151-2162.
[2] 罗仕杭, 何庆. 混沌精英池协同教与学改进的ChOA及其应用[J]. 计算机工程与应用, 2023, 59(6): 299-309.
LUO S H, HE Q. Chimp optimization algorithm improved by chaos elite pool collaborative teaching-learning and its mechanical application[J]. Computer Engineering and Applications, 2023, 59(6): 299-309.
[3] 黄志锋, 刘媛华, 任志豪, 等. 融合改进哈里斯鹰和改进动态窗口的机器人动态路径规划[J]. 计算机应用研究, 2024, 41(2): 450-458.
HUANG Z F, LIU Y H, REN Z H, et al. Research on mobile robot dynamic path planning based on improved Harris hawk algorithm and improved dynamic window algorithm [J]. Application Research of Computers, 2024, 41(2): 450-458.
[4] WANG Y, ZHOU J, LU Y, et al. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects[J]. Expert Systems with Applications, 2011, 38(11): 14231-14237.
[5] 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J]. 计算机工程与应用, 2023, 59(9): 304-312.
DU L Z, WANG Y H, XUAN Z F, et al. Research on knitted production line scheduling based on improved simulated annealing algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 304-312.
[6] YAZDANI D, CHENG R, YAZDANI D, et al. A survey of evolutionary continuous dynamic optimization over two decades—part A[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 609-629.
[7] KARIMI J, NOBAHARI H, POURTAKDOUST S H. A new hybrid approach for dynamic continuous optimization problems[J]. Applied Soft Computing, 2012, 12(3): 1158-1167.
[8] ZHANG T, WANG H D, YUAN B, et al. Surrogate-assisted evolutionary Q-learning for black-box dynamic time-linkage optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(5): 1162-1176.
[9] BOSE D, BISWAS S, KUNDU S, et al. A strategy pool adaptive artificial bee colony algorithm for dynamic environment through multi-population approach[C]//Proceedings of the 3rd International Conference on Swarm, Evolutionary, and Memetic Computing, Bhubaneswar, Dec 20-22, 2012. Berlin, Heidelberg: Springer, 2012: 611-619.
[10] 李飞, 乐强, 潘紫微, 等. 基于自动快速密度峰值聚类的粒子群动态优化算法[J]. 计算机应用, 2023, 43(S1): 154.
LI F, YUE Q, PAN Z W, et al. Dynamic particle swarm optimization algorithm based on automatic fast density peak clustering[J]. Journal of Computer Applications, 2023, 43(S1): 154.
[11] LUO W, LIN X, ZHU T, et al. A clonal selection algorithm for dynamic multimodal function optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100459.
[12] KAZEMI K J, MEYBODI M R, RAHMANI A M. A note on the exclusion operator in multi-swarm PSO algorithms for dynamic environments[J]. Connection Science, 2020, 32(3): 239-263.
[13] CAO L, XU L, GOODMAN E D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems[J]. Information Sciences, 2018, 453: 463-485.
[14] LIU X F, ZHOU Y R, YU X, et al. Dual-archive-based particle swarm optimization for dynamic optimization[J]. Applied Soft Computing, 2019, 85: 105876.
[15] BLACKWELL T, BRANKE J. Multi-swarm optimization in dynamic environments[C]//Workshops on Applications of Evolutionary Computation. Berlin, Heidelberg: Springer, 2004: 489-500.
[16] SHARIFI A, NOROOZI V, BASHIRI M, et al. Two phased cellular PSO: a new collaborative cellular algorithm for optimization in dynamic environments[C]//Proceedings of the 2012 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2012: 1-8.
[17] MUKHERJEE R, PATRA G R, KUNDU R, et al. Cluster-based differential evolution with crowding archive for niching in dynamic environments[J]. Information Sciences, 2014, 267: 58-82.
[18] YAZDANI D, CHENG R, HE C, et al. Adaptive control of subpopulations in evolutionary dynamic optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6476-6489.
[19] EMARY E, ZAWBAA H M, GROSAN C. Experienced gray wolf optimization through reinforcement learning and neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(3): 681-694.
[20] MAVROVOUNIOTIS M, YANG S. Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors[J]. Applied Soft Computing, 2013, 13(10): 4023-4037.
[21] DEBENER S, ULLSPERGER M, SIEGEL M, et al. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring[J]. Journal of Neuroscience, 2005, 25(50): 11730-11737.
[22] CAO J, ZHANG K, YONG H, et al. Extreme learning machine with affine transformation inputs in an activation function[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2093-2107.
[23] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70: 489-501.
[24] HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.
[25] CHENG J, CHEN X, YANG H, et al. An enhanced k-means algorithm using agglomerative hierarchical clustering strategy[C]//Proceedings of the 2012 IEEE International Conference on Automatic Control and Artificial Intelligence, Xiamen, Mar 3-5, 2012. Piscataway: IEEE, 2012: 407-410.
[26] MICHE Y, SORJAMAA A, BAS P, et al. OP-ELM: optimally pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2009, 21(1): 158-162.
[27] 梁靓, 魏亚星, 李义鑫, 等. 基于非线性跨代差分进化的花授粉优化算法及其应用研究[J]. 电子学报, 2023, 51(9): 2445-2456.
LIANG L, WEI Y X, LI Y X, et al. A flower pollination algorithm based on nonlinear cross-generation differential evolution and its application study[J]. Acta Electronica Sinica, 2023, 51(9): 2445-2456.
[28] BONYADI M R, MICHALEWICZ Z. Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3): 370-385.
[29] FANG W, SUN J, CHEN H, et al. A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population[J]. Information Sciences, 2016, 330: 19-48.
[30] YAZDANI D, CHENG R, YAZDANI D, et al. A survey of evolutionary continuous dynamic optimization over two decades—part B[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 630-650.
[31] BRANKE J, SCHMECK H. Designing evolutionary algorithms for dynamic optimization problems[M]//Advances in Evolutionary Computing: Theory and Applications. Berlin, Heidelberg: Springer, 2003: 239-262.
[32] TROJANOWSKI K, MICHALEWICZ Z. Searching for optima in non-stationary environments[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1843-1850.
[33] YAZDANI D, OMIDVAR M N, CHENG R, et al. Benchmarking continuous dynamic optimization: survey and generalized test suite[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3380-3393.
[34] VAFASHOAR R, MEYBODI M R. A multi-population differential evolution algorithm based on cellular learning automata and evolutionary context information for optimization in dynamic environments[J]. Applied Soft Computing, 2020, 88: 106009.
[35] FENG G, HUANG G B, LIN Q, et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks, 2009, 20(8): 1352-1357.
[36] MENG M, ZHANG T, YANG W, et al. Diverse complementary part mining for weakly supervised object localization[J]. IEEE Transactions on Image Processing, 2022, 31: 1774-1788.
[37] LI C, NGUYEN T T, YANG M, et al. An adaptive multipopulation framework for locating and tracking multiple optima[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(4): 590-605.
[38] DAS S, MANDAL A, MUKHERJEE R. An adaptive differential evolution algorithm for global optimization in dynamic environments[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 966-978.
[39] LIU X F, ZHAN Z H, GU T L, et al. Neural network-based information transfer for dynamic optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1557-1570.
[40] LU X, TANG K, MENZEL S, et al. Dynamic optimization in fast-changing environments via offline evolutionary search[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(3): 431-445. |