[1] NEDJAH N, BONILLA A D, MOURELLE L D M. Automatic speech recognition of Portuguese phonemes using neural networks ensemble[J]. Expert Systems with Applications, 2023, 229: 120378.
[2] 陈佳豪, 白炳松, 王冬华, 等. 面向语音识别系统的对抗样本攻击及防御综述[J]. 小型微型计算机系统, 2022, 43(3): 466-474.
CHEN J H, BAI B S, WANG D H, et al. Adversarial example attacks and countermeasures for speech recognition system[J]. Journal of Chinese Computer Systems, 2022, 43(3): 466-474.
[3] 袁天昊, 吉顺慧, 张鹏程, 等. 针对黑盒智能语音软件的对抗样本生成方法[J]. 软件学报, 2022, 33(5): 1569-1586.
YUAN T H, JI S H, ZHANG P C, et al. Adversarial example generation method for black box intelligent speech software[J]. Journal of Software, 2022, 33(5): 1569-1586.
[4] CARLINI N, WAGNER D. Audio adversarial example: targeted attacks on speech-to-text[C]//Proceedings of the 2018 IEEE Security and Privacy Workshops. Piscataway: IEEE, 2018: 1-7.
[5] ALZANTOT M, BALAJI B, SRIVASTAVA M. Did you hear that? Adversarial examples against automatic speech recognition[EB/OL]. [2023-10-25]. https://arxiv.org/abs/1801.00554.
[6] TAORI R, KAMSETTY A, CHU B, et al. Targeted adversarial examples for black box audio systems[C]//Proceedings of the 2019 IEEE Security and Privacy Workshops. Piscataway: IEEE, 2019: 15-20.
[7] 康帅. 语音对抗攻击技术研究[D]. 西安: 西安电子科技大学, 2020.
KANG S. Research on audio adversarial attack technology[D]. Xian: Xidian University, 2020.
[8] 陈晋音, 叶林辉, 郑海斌, 等. 面向语音识别系统的黑盒对抗攻击方法[J]. 小型微型计算机系统, 2020, 41(5): 1019-1029.
CHEN J Y, YE L H, ZHENG H B, et al. Black-box adversarial attack toward speech recognition system[J]. Journal of Chinese Computer Systems, 2020, 41(5): 1019-1029.
[9] MUN H, SEO S, SON B, et al. Black-box audio adversarial attack using particle swarm optimization[J]. IEEE Access, 2022, 10: 23532-23544.
[10] WANG S, ZHANG Z, ZHU G, et al. Query-efficient adversarial attack with low perturbation against end-to-end speech recognition systems[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 351-364.
[11] SUN J, FENG B, XU W. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway: IEEE, 2004: 325-331.
[12] HANNUN A, CASE C, CASPER J, et al. Deep speech: scaling up end-to-end speech recognition[EB/OL].[2023-10-25]. https://arxiv.org/abs/1412.5567.
[13] WARDEN P. Speech commands: a dataset for limited-vocabulary speech recognition[EB/OL]. [2023-10-25]. https://arxiv.org/abs/1804.03209.
[14] PANAYOTOV V, CHEN G, POVEY D, et al. LibriSpeech: an ASR corpus based on public domain audio books[C]//Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2015: 5206-5210.
[15] Mozilla. Common voice dataset[EB/OL]. (2022-09-21) [2023-10-25]. https://commonvoice.mozilla.org/en/datasets.
[16] YANG L, SONG Q, WU Y. Attacks on state-of-the-art face recognition using attentional adversarial attack generative network[J]. Multimedia Tools and Applications, 2021, 80: 855-875.
[17] EYKHOIT K, EVTIMOV I, FERNANDES E, et al. Robust physical-world attacks on deep learning visual classification[C]//Proceedings of the 2018 IEEE conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 1625-1634.
[18] GAO J, LANCHANTIN J, SOFFA M L, et al. Black-box generation of adversarial text sequences to evade deep learning classifiers[C]//Proceedings of the 2018 IEEE Security and Privacy Workshops. Piscataway: IEEE, 2018: 50-56.
[19] PARK D, KHAN H, YENER B. Generation & evaluation of adversarial examples for malware obfuscation[C]//Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2019: 1283-1290.
[20] REICHENBACH T, HUDSPETH A J. Discrimination of low-frequency tones employs temporal fine structure[J]. PLoS One, 2012, 7(9): e45579.
[21] GRAVES A, FERNANDEZ S, GOMEZ F, et al. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd International Conference on Machine Learning. New York:ACM, 2006: 369-376.
[22] 谢旭康, 陈戈, 孙俊, 等. TCN-Transformer-CTC的端到端语音识别[J]. 计算机应用研究, 2022, 39(3): 699-703.
XIE X K, CHEN G, SUN J, et al. TCN-Transformer-CTC for end-to-end speech recognition[J]. Application Research of Computers, 2022, 39(3): 699-703.
[23] 于振华, 康建寅, 叶鸥. 拓扑自适应粒子群优化的黑盒对抗攻击[J]. 计算机辅助设计与图形学学报, 2023, 35(8): 1239-1248.
YU Z H, KANG J Y, YE O. Black-box adversarial attack via topological adaptive particle swarm optimization[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(8): 1239-1248.
[24] LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computers & Structures, 1980, 11(1/2): 83-95.
[25] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2: 37-52.
[26] 郑伟博. 粒子群优化算法的改进及其应用研究[D]. 青岛: 青岛大学, 2016.
ZHENG W B. Improved particle swarm optimization algorithm and its application research[D]. Qingdao: Qingdao University, 2016. |