[1] FANG H, ZHANG D N, SHU Y H, et al. Deep learning for sequential recommendation: algorithms, influential factors, and evaluations[J]. ACM Transactions on Information Systems, 2020, 39(1): 1-42.
[2] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.
[3] WANG S J, HU L, WANG Y, et al. Sequential recommender systems: challenges, progress and prospects[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 6332-6338.
[4] SAID A, JAIN B J, NARR S, et al. Users and noise: the magic barrier of recommender systems[C]//Proceedings of the 20th International Conference on User Modeling, Adaptation, and Personalization. Berlin, Heidelberg: Springer, 2012: 237-248.
[5] LEVER J, KRZYWINSKI M, ALTMAN N. Model selection and overfitting[J]. Nature Methods, 2016, 13: 703-704.
[6] CEN Y K, ZHANG J W, ZOU X, et al. Controllable multi-interest framework for recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2942-2951.
[7] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L, et al. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.
[8] TANG J X, WANG K, TANG J X, et al. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.
[9] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
[10] SUN F, LIU J, WU J, et al. BERT4Rec[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
[11] 余文婷, 吴云. 时间感知的双塔型自注意力序列推荐模型[J]. 计算机科学与探索, 2024, 18(1): 175-188.
YU W T, WU Y. Time-aware sequential recommendation model based on dual-tower self-attention[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 175-188.
[12] SHIN Y, CHOI J, WI H, et al. An attentive inductive bias for sequential recommendation beyond the self-attention[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8984-8992.
[13] YANG Y H, HUANG C, XIA L H, et al. Debiased contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1063-1073.
[14] QIN X Y, YUAN H H, ZHAO P P, et al. Meta-optimized contrastive learning for sequential recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 89-98.
[15] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263.
WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263.
[16] HUANG L W, MA Y T, LIU Y B, et al. Position-enhanced and time-aware graph convolutional network for sequential recommendations[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-32.
[17] 陈万志, 王军. 时间感知增强的动态图神经网络序列推荐算法[J]. 计算机工程与应用, 2024, 60(20): 142-152.
CHEN W Z, WANG J. Time-aware enhancement dynamic graph neural networks for sequential recommendation algorithm[J]. Computer Engineering and Applications, 2024, 60(20): 142-152.
[18] YE Y W, XIA L H, HUANG C, et al. Graph masked autoencoder for sequential recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 321-330.
[19] LIU H, DAI Z, SO D, et al. Pay attention to MLPs[C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021: 9204-9215.
[20] LI M Y, ZHAO X Y, LYU C, et al. MLP4Rec: a pure MLP architecture for sequential recommendations[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, 2022: 2138-2144.
[21] GAO J T, ZHAO X Y, LI M Y, et al. SMLP4Rec: an efficient all-MLP architecture for sequential recommendations[J]. ACM Transactions on Information Systems, 2024, 42(3): 1-23.
[22] LI M Y, ZHANG Z J, ZHAO X Y, et al. AutoMLP: automated MLP for sequential recommendations[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1190-1198.
[23] LIANG J H, ZHAO X Y, LI M Y, et al. MMMLP: multi-modal multilayer perceptron for sequential recommendations[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1109-1117.
[24] QIN Y Q, WANG P F, LI C L, et al. The world is binary: contrastive learning for denoising next basket recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 859-868.
[25] TONG X H, WANG P F, LI C L, et al. Pattern-enhanced contrastive policy learning network for sequential recommendation[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 1593-1599.
[26] ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2388-2399.
[27] LIN Y J, WANG C Y, CHEN Z M, et al. A self-correcting sequential recommender[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1283-1293.
[28] ZHOU P L, YE Q C, XIE Y Q, et al. Attention calibration for transformer-based sequential recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 3595-3605.
[29] ROTELA P JR, SALOMON F L R, DE OLIVEIRA PAMPLONA E. ARIMA: an applied time series forecasting model for the Bovespa Stock Index[J]. Applied Mathematics, 2014, 5(21): 3383-3391.
[30] SENG H S, CHARLES V, GHERMAN T, et al. Hull-WEMA: a novel zero-lag approach in the moving average family, with an application to COVID-19[J]. International Journal of Management and Decision Making, 2022, 21(1): 92.
[31] WINTERS P R. Forecasting sales by exponentially weighted moving averages[J]. Management Science, 1960, 6(3): 324-342.
[32] HUNTER J S. The exponentially weighted moving average[J]. Journal of Quality Technology, 1986, 18(4): 203-210.
[33] SVETUNKOV I, KOURENTZES N, ORD J K. Complex exponential smoothing[J]. Naval Research Logistics, 2022, 69(8): 1108-1123.
[34] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[35] HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1-19.
[36] MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52.
[37] CHO J, HYUN D, KANG S, et al. Learning heterogeneous temporal patterns of user preference for timely recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 1274-1283.
[38] YUE Z R, WANG Y Q, HE Z K, et al. Linear recurrent units for sequential recommendation[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 930-938. |