计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (2): 344-366.DOI: 10.3778/j.issn.1673-9418.2407090
徐凤如,李博涵,胥帅
出版日期:
2025-02-01
发布日期:
2025-01-23
XU Fengru, LI Bohan, XU Shuai
Online:
2025-02-01
Published:
2025-01-23
摘要: 推荐系统旨在解决传统信息检索系统中信息过载的问题,并且致力于向用户推荐个性化感兴趣的内容。人与系统交互的行为具有一定的顺序性,在提供推荐时需要将其纳入考虑,这就是序列推荐系统。序列推荐系统通过分析用户行为序列,捕捉用户偏好的动态变化,为电子商务、社交媒体和在线视频等多个领域提供精准的个性化推荐服务。全面阐述了序列推荐系统的当前研究进展,并探讨了其在个性化推荐领域的重要性与应用潜力。定义了序列推荐的研究问题,明确了推荐序列的核心目标和挑战。详细分类并总结了序列推荐的主要技术,包括:基于马尔可夫链的传统方法,该方法在建模用户行为序列时依赖于状态转移概率;深度学习驱动的方法,利用神经网络模型来捕捉长期依赖关系与复杂模式;混合模型方法,结合多种算法来增强推荐系统的准确性和鲁棒性;以及新兴的基于大语言模型的方法,这些方法通过引入预训练的大语言模型来提升对用户行为和推荐内容的理解能力。展望了未来的研究方向,强调了上下文感知、多模态融合、因果推断、垂直领域特定大语言模型以及缓解幻觉问题等研究点的重要性。
徐凤如, 李博涵, 胥帅. 基于深度学习与大语言模型的序列推荐研究进展[J]. 计算机科学与探索, 2025, 19(2): 344-366.
XU Fengru, LI Bohan, XU Shuai. Research Progress on Sequence Recommendation Based on Deep Learning and Large Language Model[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(2): 344-366.
[1] WANG S J, ZHANG Q, HU L, et al. Sequential/session-based recommendations[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 3425-3428. [2] WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for NextBasket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412. [3] HE R, KANG W C, MCAULEY J J. Translation-based recommendation: a scalable method for modeling sequential behavior[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 5264-5268. [4] FAN Z W, LIU Z W, WANG S, et al. Modeling sequences as distributions with uncertainty for sequential recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3019-3023. [5] LI L, XIAHOU J B, LIN F, et al. DistVAE: distributed variational autoencoder for sequential recommendation[J]. Knowledge-Based Systems, 2023, 264: 110313. [6] WANG D J, XU D W, YU D J, et al. Time-aware sequence model for next-item recommendation[J]. Applied Intelligence, 2021, 51(2): 906-920. [7] DUAN J S, ZHANG P F, QIU R H, et al. Long short-term enhanced memory for sequential recommendation[J]. World Wide Web, 2023, 26(2): 561-583. [8] HUANG H X, WANG Y. SRM: a sequential recommendation model with convolutional neural network and multiple features[C]//Proceedings of the 2021 International Conference on Machine Learning and Intelligent Systems Engineering. Piscataway: IEEE, 2021: 49-52. [9] CHENG L, KHALITOV R, YU T, et al. Classification of long sequential data using circular dilated convolutional neural networks[J]. Neurocomputing, 2023, 518: 50-59. [10] YUAN Y, TANG Y, YAN Z Q, et al. KSRG: knowledge-aware sequential recommendation with graph neural networks[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 2408-2414. [11] GUO K F, ZENG G L. Graph convolutional network and self-attentive for sequential recommendation[J]. PeerJ Computer Science, 2023, 9: e1701. [12] SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450. [13] ZHU Y H, HUANG B, JIANG S H, et al. Progressive self-attention network with unsymmetrical positional encoding for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2029-2033. [14] GUO L, ZHANG J Y, CHEN T, et al. Reinforcement learning-enhanced shared-account cross-domain sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(7): 7397-7411. [15] LI Y C, CHEN H X, LI Y L, et al. Reinforcement learning based path exploration for sequential explainable recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11801-11814. [16] XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273. [17] QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823. [18] WANG S J, HU L, CAO L B, et al. Attention-based transactional context embedding for next-item recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2532-2539. [19] HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 505-514. [20] ZIMDARS A, CHICKERING D M, MEEK C. Using temporal data for making recommendations[EB/OL]. [2024-04-14]. https://arxiv.org/abs/1301.2320. [21] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L, et al. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. [22] ZHAN Z X, HE M K, PAN W K, et al. TransRec++: translation- based sequential recommendation with heterogeneous feedback[J]. Frontiers of Computer Science, 2022, 16(2): 162615. [23] GRAVES A, JAITLY N. Towards end-to-end speech recognition with recurrent neural networks[C]//Proceedings of the 31st International Conference on Machine Learning, 2014: 1764-1772. [24] ASHENGO Y A, AGA R T, ABEBE S L. Context based machine translation with recurrent neural network for English-Amharic translation[J]. Machine Translation, 2021, 35(1): 19-36. [25] HIDASI B. Session-based recommendations with recurrent neural networks[EB/OL]. [2024-04-14]. https://arxiv.org/abs/ 1511.06939. [26] HIDASI B, QUADRANA M, KARATZOGLOU A, et al. Parallel recurrent neural network architectures for feature-rich session-based recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 241-248. [27] TAN Y K, XU X X, LIU Y, et al. Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. [28] VILLATEL K, SMIRNOVA E, MARY J, et al. Recurrent neural networks for long and short-term sequential recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/1807.09142. [29] RAKKAPPAN L, RAJAN V, RAKKAPPAN L, et al. Context-aware sequential recommendations with stacked recurrent neural networks[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3172-3178. [30] CHEN L H, YANG N, YU P S, et al. Time lag aware sequential recommendation[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 212-221. [31] BEUTEL A, COVINGTON P, JAIN S, et al. Latent cross: making use of context in recurrent recommender systems[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 46-54. [32] JANNACH D, LUDEWIG M, JANNACH D, et al. When recurrent neural networks meet the neighborhood for session-based recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 306-310. [33] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [34] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1106-1114. [35] TUAN T X, PHUONG T M. 3D convolutional networks for session-based recommendation with content features[C]//Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 138-146. [36] TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573. [37] YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al. A simple convolutional generative network for next item recommendation[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 582-590. [38] YOU J X, WANG Y C, PAL A, et al. Hierarchical temporal convolutional networks for dynamic recommender systems[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2236-2246. [39] YUAN F J, HE X N, JIANG H C, et al. Future data helps training: modeling future contexts for session-based recommendation[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 303-313. [40] YAN A, CHENG S, KANG W C, et al. CosRec: 2D convolutional neural networks for sequential recommendation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2173-2176. [41] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [42] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. [43] GUO S Z, LIAO X F, MENG F, et al. FSASA: sequential recommendation based on fusing session-aware models and self-attention networks[J]. Computer Science and Information Systems, 2024, 21(1): 1-20. [44] FISCHER E, ZOLLER D, DALLMANN A, et al. Integrating keywords into BERT4Rec for sequential recommendation[C]//Advances in Artificial Intelligence: 43rd German Conference on AI. Cham: Springer, 2020: 275-282. [45] ZHAO Q H. RESETBERT4Rec: a pre-training model integrating time and user historical behavior for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1812-1816. [46] FAN Z W, LIU Z W, WANG Y, et al. Sequential recommendation via stochastic self-attention[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2036-2047. [47] SHIN Y, CHOI J, WI H, et al. An attentive inductive bias for sequential recommendation beyond the self-attention[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(8): 8984-8992. [48] PENG B, CHEN Z Q, PARTHASARATHY S, et al. Modeling sequences as star graphs to address over-smoothing in self-attentive sequential recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2311.07742. [49] LI J C, WANG Y J, MCAULEY J. Time interval aware self-attention for sequential recommendation[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 322-330. [50] NI J J, TANG G Y, SHEN T, et al. An improved sequential recommendation algorithm based on short-sequence enhancement and temporal self-attention mechanism[J]. Complexity, 2022(1): 4275868. [51] WU J B, CAI R Q, WANG H N. DJÀ VU: a contextualized temporal attention mechanism for sequential recommendation[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2199-2209. [52] HUANG X, KOU Y, SHEN D R, et al. Exploiting item relationships with dual-channel attention networks for session-based recommendation[C]//Proceedings of the 2023 International Conference on Web Information Systems and Applications. Singapore: Springer, 2023: 198-205. [53] BENSLIMANE S, AZÉ J, BRINGAY S, et al. A text and GNN based controversy detection method on social media[J]. World Wide Web, 2023, 26(2): 799-825. [54] ZHANG X M, LIANG L, LIU L, et al. Graph neural networks and their current applications in bioinformatics[J]. Frontiers in Genetics, 2021, 12: 690049. [55] LIU Z Y, ZHOU J. Graph attention networks[M]//Introduction to graph neural networks. Cham: Springer, 2020: 39-41. [56] ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 793-803. [57] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[J].Proceedings of the AAAI Conference on Artificial Intelligence,2019, 33(1): 346-353. [58] CHANG J, GAO C, ZHENG Y, et al. Sequential recommendation with graph neural networks[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 378-387. [59] MA C, MA L H, ZHANG Y X, et al. Memory augmented graph neural networks for sequential recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5045-5052. [60] ZHU T Y, SUN L L, CHEN G Q. Graph-based embedding smoothing for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 496-508. [61] LI Y, CHEN T, LUO Y D, et al. Discovering collaborative signals for next POI recommendation with iterative Seq2Graph augmentation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2106.15814. [62] GUO L, ZHANG J Y, TANG L, et al. Time interval-enhanced graph neural network for shared-account cross-domain sequential recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 4002-4016. [63] GUO L, TANG L, CHEN T, et al. DA-GCN: a domain-aware attentive graph convolution network for shared-account cross- domain sequential recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2105.03300. [64] WANG X H, YUE H P, WANG Z Z, et al. Unbiased and robust: external attention-enhanced graph contrastive learning for cross-domain sequential recommendation[C]//Proceedings of the 2023 IEEE International Conference on Data Mining. Piscataway: IEEE, 2023: 1526-1534. [65] TIAN Y, CHANG J X, NIU Y N, et al. When multi-level meets multi-interest: a multi-grained neural model for sequential recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1632-1641. [66] CHENG Y H, GOU J P, OU W H. Online distillation and preferences fusion for graph convolutional network-based sequential recommendation[C]//Proceedings of the 2023 Chinese Conference on Pattern Recognition and Computer Vision. Singapore: Springer, 2023: 167-178. [67] HUANG L W, MA Y T, LIU Y B, et al. Position-enhanced and time-aware graph convolutional network for sequential recommendations[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-32. [68] ZHANG M Q, WU S, YU X L, et al. Dynamic graph neural networks for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4741-4753. [69] LIU F, LIU W W, LI X T, et al. Inter-sequence enhanced framework for personalized sequential recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2004.12118. [70] QIAO J J, WANG L, DUAN L G. Sequence and graph structure co-awareness via gating mechanism and self-attention for session-based recommendation[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(9): 2591- 2605. [71] HUANG L Y, LI R, LEI J S, et al. Sequence-aware graph neural network incorporating neighborhood information for session-based recommendation[J]. International Journal of Computational Intelligence Systems, 2024, 17(1): 32. [72] SHI X J, LIU P Y, SUN G H, et al. Sequential recommendation model that combines attention mechanism with user scoring information[C]//Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications. Piscataway: IEEE, 2022: 207-212. [73] CHEN Q, LI G H, ZHOU Q, et al. Double attention convolutional neural network for sequential recommendation[J]. ACM Transactions on the Web, 2022, 16(4): 1-23. [74] JIANG J Y, ZHANG P Y, LUO Y T, et al. AdaMCT: adaptive mixture of CNN-transformer for sequential recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 976-986. [75] ZHANG Z G, WANG B, XIE X Q. Intention-centric learning via dual attention for sequential recommendation[J]. IEEE Access, 2024, 12: 2854-2867. [76] YIN S Z, XIA Y, LIU Y J, et al. Fusing user preferences and spatiotemporal information for sequential recommendation[J]. IEEE Access, 2022, 10: 89545-89554. [77] LEI J S, LI Y X, YANG S Y, et al. Two-stage sequential recommendation for side information fusion and long-term and short-term preferences modeling[J]. Journal of Intelligent Information Systems, 2022, 59(3): 657-677. [78] GHOLAMI E, MOTAMEDI M, ARAVINDAKSHAN A. PARSRec: explainable personalized attention-fused recurrent sequential recommendation using session partial actions[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 454-464. [79] YU D J, CHEN J J, WANG D J, et al. DSIM: dynamic and static interest mining for sequential recommendation[J]. Knowledge and Information Systems, 2022, 64(8): 2267-2288. [80] ZHANG J Y, DUAN H C, GUO L, et al. Towards lightweight cross-domain sequential recommendation via external attention-enhanced graph convolution network[C]//Proceedings of the 2023 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2023: 205-220. [81] HAO Y J, MA J, ZHAO P P, et al. Multi-dimensional graph neural network for sequential recommendation[J]. Pattern Recognition, 2023, 139: 109504. [82] YANG Z, DING M, XU B, et al. STAM: a spatiotemporal aggregation method for graph neural network-based recommendation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 3217-3228. [83] YANG Y H, HUANG C, XIA L H, et al. Debiased contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1063-1073. [84] WU B, SHI T R, ZHONG L H, et al. Graph-coupled time interval network for sequential recommendation[J]. Information Sciences, 2023, 648: 119510. [85] ZHU Y Z, LIANG X F, DUAN H J, et al. Node representation learning with graph augmentation for sequential recommendation[J]. Information Sciences, 2023, 646: 119405. [86] CHEN Z, WANG W W. Time interval-aware graph with self-attention for sequential recommendation[C]//Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence. New York: ACM, 2022: 1-9. [87] KUMAR C, ABUZAR M, KUMAR M. MGU-GNN: minimal gated unit based graph neural network for session-based recommendation[J]. Applied Intelligence, 2023, 53(20): 23147-23165. [88] SANG S, LIU N, LI W X, et al. High-order attentive graph neural network for session-based recommendation[J]. Applied Intelligence, 2022, 52(14): 16975-16989. [89] YANG Z Y, WANG H, ZHANG M G. WGIN: a session-based recommendation model considering the repeated link effect[J]. IEEE Access, 2020, 8: 216104-216115. [90] LIAN Y H, YUN J, SU X M, et al. Sequential recommendation for online consumption by ACFNN[C]//Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence. Piscataway: IEEE, 2021: 165-169. [91] LI Z, LEI C Y, ZOU P C, et al. Attention with long-term interval-based gated recurrent units for modeling sequential user behaviors[C]//Proceedings of the 25th International Conference on Database Systems for Advanced Applications. Cham: Springer, 2020: 663-670. [92] ZHANG Z Z, WANG B. Learning sequential and general interests via a joint neural model for session-based recommendation[J]. Neurocomputing, 2020, 415: 165-173. [93] ZHANG L X, WANG P S, LI J C, et al. Attentive hybrid recurrent neural networks for sequential recommendation[J]. Neural Computing and Applications, 2021, 33(17): 11091-11105. [94] DING H, MA Y F, DEORAS A, et al. Zero-shot recommender systems[EB/OL]. [2024-04-14]. https://arxiv.org/abs/ 2105.08318. [95] HOU Y P, MU S L, ZHAO W X, et al. Towards universal sequence representation learning for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 585-593. [96] WANG L, LIM E P. Zero-shot next-item recommendation using large pretrained language models[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2304.03153. [97] RADFORD A, NARASIMHAN K. Improving language understanding by generative pre-training[EB/OL]. [2024-04-14]. https://www.mikecaptain.com/resources/pdf/GPT-1.pdf. [98] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-04-14]. https://arxiv.org/abs/1810.04805. [99] GENG S J, LIU S C, FU Z H, et al. Recommendation as language processing (RLP): a unified pretrain, personalized prompt & predict paradigm (P5)[C]//Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 299-315. [100] HOU Y P, HE Z K, MCAULEY J, et al. Learning vector-quantized item representation for transferable sequential recommenders[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1162-1171. [101] ZHOU X Y, JIN J P, MA L, et al. SCRIPT: sequential cross-meta-information recommendation in pretrain and prompt paradigm[C]//Proceedings of the 2023 IEEE International Conference on Data Mining. Piscataway: IEEE, 2023: 888-897. [102] ZHANG Z Z, WANG B. Prompt learning for news recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 227-237. [103] LI X Y, ZHANG Y F, MALTHOUSE E C. PBNR: prompt-based news recommender system[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2304.07862. [104] COLIN R, NOAM S, ADAM R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1): 5485-5551. [105] LI X Y, ZHANG Y F, MALTHOUSE E C. A preliminary study of ChatGPT on news recommendation: personalization, provider fairness, fake news[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2306.10702. [106] BAO K Q, ZHANG J Z, ZHANG Y, et al. TALLRec: an effective and efficient tuning framework to align large language model with recommendation[C]//Proceedings of the 17th ACM Conference on Recommender Systems. New York: ACM, 2023: 1007-1014. [107] HOU Y P, ZHANG J J, LIN Z H, et al. Large language models are zero-shot rankers for recommender systems[C]//Proceedings of the 2024 European Conference on Information Retrieval. Cham: Springer, 2024: 364-381. [108] YANG F, CHEN Z, JIANG Z Y, et al. PALR: personalization aware LLMs for recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2305.07622. [109] LI J M, ZHANG W T, WANG T, et al. GPT4Rec: a generative framework for personalized recommendation and user interests interpretation[EB/OL]. [2024-04-14]. https://arxiv. org/abs/2304.03879. [110] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198. [111] PETROV A V, MACDONALD C. Generative sequential recommendation with GPTRec[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2306.11114. [112] WANG J, YUAN F J, CHENG M Y, et al. TransRec: learning transferable recommendation from mixture-of-modality feedback[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2206. 06190. [113] YUAN Z, YUAN F J, SONG Y, et al. Where to go next for recommender systems? ID- vs. modality-based recommender models revisited[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 2639-2649. [114] GENG S J, TAN J T, LIU S C, et al. VIP5: towards multimodal foundation models for recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2305.14302. [115] WANG Y, LIU Z W, ZHANG J G, et al. DRDT: dynamic reflection with divergent thinking for LLM-based sequential recommendation[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2312.11336. [116] XI Y J, LIU W W, LIN J H, et al. Towards open-world recommendation with knowledge augmentation from large language models[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2306.10933. [117] LIN J H, SHAN R, ZHU C X, et al. ReLLa: retrieval-enhanced large language models for lifelong sequential behavior comprehension in recommendation[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3497-3508. [118] WANG H, LIU X, FAN W, et al. Rethinking large language model architectures for sequential recommendations[EB/OL]. [2024-04-14]. https://arxiv.org/abs/2402.09543. [119] LIU Q J, CHEN N, SAKAI T, et al. ONCE: boosting content- based recommendation with both open- and closed-source large language models[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York: ACM, 2024: 452-461. |
[1] | 钱忠胜, 肖双龙, 朱辉, 王晓闻, 刘金平. 利用GRU双分支信息协同增强的长尾推荐模型[J]. 计算机科学与探索, 2025, 19(2): 476-489. |
[2] | 常保发, 车超, 梁艳. 基于大语言模型多轮对话的推荐模型研究[J]. 计算机科学与探索, 2025, 19(2): 385-395. |
[3] | 王晓宇, 李欣, 胡勉宁, 薛迪. 基于大语言模型的CIL-LLM类别增量学习框架[J]. 计算机科学与探索, 2025, 19(2): 374-384. |
[4] | 冯拓宇, 王刚亮, 乔子剑, 李伟平, 张雨松, 郭庆浪. SbSER:基于外部子图生成的大语言模型分步增强推理框架[J]. 计算机科学与探索, 2025, 19(2): 367-373. |
[5] | 岳颀, 张晨康. 多模态场景下AIGC的应用综述[J]. 计算机科学与探索, 2025, 19(1): 79-96. |
[6] | 王永, 秦嘉俊, 黄有锐, 邓江洲. 融合知识图谱和大模型的高校科研管理问答系统设计[J]. 计算机科学与探索, 2025, 19(1): 107-117. |
[7] | 于丰瑞, 杜彦辉. 网络威胁技战术情报识别提取生成式技术研究[J]. 计算机科学与探索, 2025, 19(1): 118-131. |
[8] | 徐磊, 胡亚豪, 陈满, 陈军, 潘志松. 融合前缀调优和提示学习的仇恨言论检测方法[J]. 计算机科学与探索, 2025, 19(1): 97-106. |
[9] | 向小伟, 申艳光, 胡明昊, 闫天伟, 罗威, 罗准辰. 大模型驱动的科技政策法规问答系统研究[J]. 计算机科学与探索, 2024, 18(9): 2349-2360. |
[10] | 李逸飞, 张玲玲, 董宇轩, 王佳欣, 仲宇杰, 魏笔凡. 基于大语言模型增强表征对齐的小样本持续关系抽取方法[J]. 计算机科学与探索, 2024, 18(9): 2326-2336. |
[11] | 纪贵阳, 王裴岩, 余卓. 面向工艺规范文本的大语言模型知识注入方法研究[J]. 计算机科学与探索, 2024, 18(9): 2361-2369. |
[12] | 陈龙飞, 高鑫, 侯皓天, 叶初阳, 刘亚欧, 张美慧. 生成式大语言模型在中文放射医学领域的应用研究[J]. 计算机科学与探索, 2024, 18(9): 2337-2348. |
[13] | 王永贵, 陈书铭, 刘义海, 赖贞祥. 结合超图对比学习和关系聚类的知识感知推荐算法[J]. 计算机科学与探索, 2024, 18(8): 2140-2155. |
[14] | 骆仕杰, 金日泽, 韩抒真. 采用低秩编码优化大语言模型的高校基础知识问答研究[J]. 计算机科学与探索, 2024, 18(8): 2156-2168. |
[15] | 盛蕾, 陈希亮, 赖俊. 基于潜在状态分布GPT的离线多智能体强化学习方法[J]. 计算机科学与探索, 2024, 18(8): 2169-2179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||