[1] 吴云峰. 多维数据融合的高校科研数据管理模型构建与运行保障研究[J]. 情报科学, 2020, 38(12): 110-115.
WU Y F. Construction and operation guarantee of university scientific research data management model based on multidimensional data fusion[J]. Information Science, 2020, 38(12): 110-115.
[2] 司莉, 陈辰. 基于BIBFRAME的科研数据本体构建研究[J]. 信息资源管理学报, 2020, 10(3): 110-117.
SI L, CHEN C. Research on the scientific data ontology in the form of BIBFRAME model[J]. Journal of Information Resources Management, 2020, 10(3): 110-117.
[3] 魏鹏飞, 曾碧, 汪明慧, 等. 基于深度学习的口语理解联合建模算法综述[J]. 软件学报, 2022, 33(11): 4192-4216.
WEI P F, ZENG B, WANG M H, et al. Survey on joint modeling algorithms for spoken language understanding based on deep learning[J]. Journal of Software, 2022, 33(11): 4192-4216.
[4] 李凯, 秦楠, 熊鹰, 等. 高校智能问答平台的建设与应用研究——以华中科技大学为例[J]. 现代教育技术, 2022, 32(2): 109-117.
LI K, QIN N, XIONG Y, et al. Research on the construction and application of intelligent question answering platform in colleges and universities —taking Huazhong University of Science and Technology as an example[J]. Modern Educational Technology, 2022, 32(2): 109-117.
[5] 闫悦, 郭晓然, 王铁君, 等. 问答系统研究综述[J]. 计算机系统应用, 2023, 32(8): 1-18.
YAN Y, GUO X R, WANG T J, et al. Survey on question answering system research[J]. Computer Systems & Applications, 2023, 32(8): 1-18.
[6] 陈明, 刘蓉, 熊回香. 基于医疗知识图谱的智能问答系统研究[J]. 情报科学, 2023, 41(12): 118-126.
CHEN M, LIU R, XIONG H X. Intelligent question answering system based on medical knowledge graph[J]. Information Science, 2023, 41(12): 118-126.
[7] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
WEN S, QIAN L, HU M D, et al. Review of research progress on question-answering techniques based on large language models[J]. Data Analysis and Knowledge Discovery, 2024, 8(6): 16-29.
[8] 王婷, 王娜, 崔运鹏, 等. 基于人工智能大模型技术的果蔬农技知识智能问答系统[J]. 智慧农业, 2023, 5(4): 105-116.
WANG T, WANG N, CUI Y P, et al. Agricultural technology knowledge intelligent question-answering system based on large language model[J]. Smart Agriculture, 2023, 5(4): 105-116.
[9] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1-11.
WANG Z Y, YU Q, WANG N, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer Engineering and Applications, 2020, 56(23): 1-11.
[10] ALLAM A M N, HAGGAG M H. The question answering systems: a survey[J]. International Journal of Research and Reviews in Information Sciences, 2012, 2(3): 211-221.
[11] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948.
[12] Li L F, WANG P, YAN J, et al. Real-world data medical knowledge graph: construction and applications[J]. Artificial Intelligence in Medicine, 2020, 103: 101817.
[13] CHENG D W, YANG F Z, WANG X Y, et al. Knowledge graph-based event embedding framework for financial quantitative investments[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 2221-2230.
[14] 李惠乾, 钟柏昌. 教育知识图谱:研究进展与未来发展——基于2013—2023年中文核心期刊载文的分析[J]. 计算机工程, 2024, 50(7): 1-12.
LI H Q, ZHONG B C. Educational knowledge graph: research progress and future development —analysis of articles published in core Chinese journals from 2013 to 2023[J]. Computer Engineering, 2024, 50(7): 1-12.
[15] LUO Y X, YANG B L, XU D H, et al. A survey: complex knowledge base question answering[C]//Proceedings of the 2022 IEEE 2nd International Conference on Information Communication and Software Engineering. Piscataway: IEEE, 2022: 46-52.
[16] 李冬梅, 罗斯斯, 张小平, 等. 命名实体识别方法研究综述[J]. 计算机科学与探索, 2022, 16(9): 1954-1968.
LI D M, LUO S S, ZHANG X P, et al. Review on named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968.
[17] LUO L, YANG Z H, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8): 1381-1388.
[18] ZHU Y Y, WANG G X, Karlsson B F. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 3384-3393.
[19] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[20] 王堃, 林民, 李艳玲. 端到端对话系统意图语义槽联合识别研究综述[J]. 计算机工程与应用, 2020, 56(14): 14-25.
WANG K, LIN M, LI Y L. Review of research on joint intent detection and semantic slot filling in end to end dialogue system[J]. Computer Engineering and Applications, 2020, 56(14): 14-25.
[21] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[23] WEI J, TAY Y, BOMMASANI R, et al. Emergent abilities of large language models[EB/OL]. [2024-05-06]. https://arxiv.org/abs/2206.07682.
[24] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 1877-1901.
[25] ZENG A H, LIU X, DU Z X, et al. GLM-130B: an open bilingual pre-trained model[EB/OL]. [2024-05-06]. https://arxiv.org/abs/2210.02414.
[26] RAWTE V, SHETH A, DAS A. A survey of hallucination in large foundation models[EB/OL]. [2024-05-06]. https://arxiv.org/abs/2309.05922.
[27] BUNK T, VARSHNEYA D, VLASOV V, et al. DIET: lightweight language understanding for dialogue systems[EB/OL]. [2024-05-06]. https://arxiv.org/abs/2004.09936.
[28] LIU N F, LIN K, HEWITT J, et al. Lost in the middle: how language models use long contexts[J]. Transactions of the Association for Computational Linguistics, 2024, 12: 157-173.
[29] 黄勃, 吴申奥, 王文广, 等. 图模互补:知识图谱与大模型融合综述[J]. 武汉大学学报(理学版), 2024, 70(4): 397-412.
HUANG B, WU S A, WANG W G, et al. KG-LLM-MCom: a survey on integration of knowledge graph and large language model[J]. Journal of Wuhan University (Natural Science Edition), 2024, 70(4): 397-412. |