摘要: 随着深度学习技术的不断进步,人工神经网络模型在图像识别、自然语言处理、自动驾驶等多个领域都展现出了前所未有的性能。这些模型通常具有数百万甚至数十亿个参数,通过大量的训练数据学习到复杂的特征表示。然而,在资源受限的环境下,如移动设备、嵌入式系统等边缘计算场景,模型的功耗、内存占用和计算效率等因素限制了大型神经网络模型的应用。为了解决这一问题,研究人员提出了多种模型压缩技术,例如剪枝、蒸馏、神经网络搜索(NAS)、量化、低秩分解等,旨在减少模型的参数量,计算复杂度和存储需求,同时尽可能保持模型的精准度。本文将系统介绍这些模型压缩方法的发展过程,重点分析每种方法的主要原理和关键技术。主要包括剪枝技术的不同策略,如结构化剪枝和非结构化剪枝;知识蒸馏中如何定义知识;NAS中的搜索空间,搜索算法和网络性能评估;量化中的训练后量化和训练中量化;以及低秩分解中的奇异值分解和张量分解。最后,对模型压缩技术的未来发展方向做出讨论,希望为该领域对研究者提供一些思路。