[1] 江涛, 屠立平, 许家佗. 中医舌象智能诊断技术研究述评及展望[J]. 中国中医药信息杂志, 2024, 31(7): 182-187.
JIANG T, TU L P, XU J T. Review and prospects of research on artificial intelligence TCM tongue diagnosis technology[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2024, 31(7): 182-187.
[2] 赵越, 杨玉强. 基于HIS色彩空间的水平集彩色图像分割算法[J]. 自动化技术与应用, 2017, 36(4): 25-27.
ZHAO Y, YANG Y Q. Algorithm for color image segmentation of level sets based on HIS color space[J]. Techniques of Automation and Applications, 2017, 36(4): 25-27.
[3] 张婷, 王琳. 中医舌诊客观化研究进展[J]. 实用中医内科杂志, 2024, 38(6): 82-85.
ZHANG T, WANG L. Research progress in objectification of tongue diagnosis[J]. Journal of Practical Traditional Chinese Internal Medicine, 2024, 38(6): 82-85.
[4] 陈恩纳, 李圣烨, 胡毓亲, 等. 中医舌诊图像采集与色彩信息分析研究进展[J]. 中华中医药杂志, 2024, 39(7): 3586-3589.
CHEN E N, LI S Y, HU Y Q, et al. Research progress on image acquisition and color information analysis of tongue diagnosis in traditional Chinese medicine[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2024, 39(7): 3586-3589.
[5] CHEN X, ZHAO J X, ISELIN K C, et al. Keratoconus detection of changes using deep learning of colour-coded maps[J]. BMJ Open Ophthalmology, 2021, 6(1): e000824.
[6] QURESHI I, YAN J H, ABBAS Q, et al. Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends[J]. Information Fusion, 2023, 90: 316-352.
[7] SUN G C, DING S F, SUN T F, et al. SA-CapsGAN: using capsule networks with embedded self-attention for generative adversarial network[J]. Neurocomputing, 2021, 423: 399-406.
[8] 许家佗, 张志枫, 李蕾, 等. 基于图像分析的亚健康状态舌象颜色特征研究[J]. 辽宁中医杂志, 2010, 37(12): 2328-2330.
XU J T, ZHANG Z F, LI L, et al. Research on tongue image color features for sub-health state based on image analysis[J]. Liaoning Journal of Traditional Chinese Medicine, 2010, 37(12): 2328-2330.
[9] 张新峰, 焦月, 李欢欢, 等. 基于粒子群算法的Universum SVM参数选择[J]. 北京工业大学学报, 2013, 39(6): 840-845.
ZHANG X F, JIAO Y, LI H H, et al. Model parameter selection of the universum SVM based on particle swarm optimization[J]. Journal of Beijing University of Technology, 2013, 39(6): 840-845.
[10] 张翔, 胡广芹, 张新峰. 中医舌图像的质量评价研究[J]. 世界中西医结合杂志, 2017, 12(11): 1607-1611.
ZHANG X, HU G Q, ZHANG X F. Quality evaluation of tongue image in traditional Chinese medicine[J]. World Journal of Integrated Traditional and Western Medicine, 2017, 12(11): 1607-1611.
[11] 陆冠龙, 黄益栓, 张琦, 等. 融合舌象和形体特征的辅助中医体质辨识模型研究[J]. 时珍国医国药, 2019, 30(1): 244-246.
LU G L, HUANG Y S, ZHANG Q, et al. The study of auxiliary TCM constitution identification model based on tongue image and physical features[J]. Lishizhen Medicine and Materia Medica Research, 2019, 30(1): 244-246.
[12] QU P L, ZHANG H, ZHUO L, et al. Automatic analysis of tongue substance color and coating color using sparse representation-based classifier[C]//Proceedings of the 2016 International Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2017: 289-294.
[13] 宋宁, 唐丽明, 杜红跃, 等. 基于聚类分析的糖尿病胃轻瘫中医证型分布研究[J]. 医学信息, 2022, 35(11): 97-101.
SONG N, TANG L M, DU H Y, et al. Distribution of TCM syndromes of diabetic gastroparesis based on cluster analysis[J]. Journal of Medical Information, 2022, 35(11): 97-101.
[14] 刘师师. 基于词典优化算法对舌象特征提取的研究[D]. 长沙: 长沙理工大学, 2016.
LIU S S. The research of tongue feature extraction based on optimization dictionary algorithm[D]. Changsha: Changsha University of Science & Technology, 2016.
[15] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and the 8th International Workshop on Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.
[16] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[17] ZHANG X M, ZHU X B, ZHANG X Y, et al. SegGAN: semantic segmentation with generative adversarial network[C]//Proceedings of the 4th IEEE International Conference on Multimedia Big Data. Piscataway: IEEE, 2018: 1-5.
[18] 肖庆新, 张菁, 张辉, 等. 基于轻型卷积神经网络的舌苔颜色分类方法[J]. 测控技术, 2019, 38(3): 26-31.
XIAO Q X, ZHANG J, ZHANG H, et al. Tongue coating color classification based on shallow convolutional neural network[J]. Measurement & Control Technology, 2019, 38(3): 26-31.
[19] SONG C, WANG B, XU J T. Classifying tongue images using deep transfer learning[C]//Proceedings of the 5th International Conference on Computational Intelligence and Applications. Piscataway: IEEE, 2020: 103-107.
[20] ZHANG D, ZHANG J H, WANG Z, et al. Tongue colour and coating prediction in traditional Chinese medicine based on visible hyperspectral imaging[J]. IET Image Processing, 2019, 13(12): 2265-2270.
[21] FAN Y, TANG X Y, WU X L, et al. A robust multi-environment tongue image segmentation method for computer-aided tongue diagnosis[C]//Proceedings of the Medical Imaging 2024: Computer-Aided Diagnosis, 2024: 119.
[22] WENG H, LI L, LEI H W, et al. A weakly supervised tooth-mark and crack detection method in tongue image[J]. Concurrency and Computation: Practice and Experience, 2021, 33(16): e6262.
[23] LI J, YUAN P, HU X J, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning[J]. Journal of Biomedical Informatics, 2021, 115: 103693.
[24] LIU Q, LI Y, YANG P, et al. A survey of artificial intelligence in tongue image for disease diagnosis and syndrome differentiation[J]. Digital Health, 2023, 9: 20552076231191044.
[25] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680.
[26] DE SOUZA V L T, MARQUES B A D, BATAGELO H C, et al. A review on generative adversarial networks for image generation[J]. Computers & Graphics, 2023, 114: 13-25.
[27] PALADUGU P S, ONG J, NELSON N, et al. Generative adversarial networks in medicine: important considerations for this emerging innovation in artificial intelligence[J]. Annals of Biomedical Engineering, 2023, 51(10): 2130-2142.
[28] HAQUE A. EC-GAN: low-sample classification using semi-supervised algorithms and GANs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(18): 15797-15798.
[29] TRAN N T, TRAN V H, NGUYEN N B, et al. On data augmentation for GAN training[J]. IEEE Transactions on Image Processing, 2021, 30: 1882-1897.
[30] CHAKRABORTY T, REDDY K S U, NAIK S M, et al. Ten years of generative adversarial nets (GANs): a survey of the state-of-the-art[J]. Machine Learning: Science and Technology, 2024, 5(1): 011001.
[31] ZHOU T, LI Q, LU H L, et al. GAN review: models and medical image fusion applications[J]. Information Fusion, 2023, 91: 134-148.
[32] 谢芳芳, 谢超群, 马健文, 等. 不同疲劳程度患者中医证候的舌象特征研究[J]. 中国中医药信息杂志, 2024, 31(11): 158-165.
XIE F F, XIE C Q, MA J W, et al. Study on tongue image characteristics of TCM symptoms in patients with different fatigue degree[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2024, 31(11): 158-165.
[33] 徐安迎, 杨涛, 王天舒, 等. 中医望诊形态特征提取研究思路与方法[J]. 南京中医药大学学报, 2024, 40(12): 1315-1322.
XU A Y, YANG T, WANG T S, et al. Research ideas and methods of morphological feature extraction of traditional Chinese medicine inspection[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2024, 40(12): 1315-1322.
[34] 惠世冀. 基于卷积神经网络和生成对抗网络舌象颜色校正[D]. 广州: 广州中医药大学, 2023.
HUI S J. Color correction with convolutional neural network and generative adversarial network for improving the performance of congested tongue recognition[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2023.
[35] DAI S X, GUO X J, LIU S, et al. Application of intelligent tongue image analysis in conjunction with microbiomes in the diagnosis of MAFLD[J]. Heliyon, 2024, 10(7): e29269.
[36] YI Z H, LAI X S, SUN A N, et al. Tongue feature recognition to monitor rehabilitation: deep neural network with visual attention mechanism[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1392513.
[37] CHEN R F, HUANG W B, HUANG B H, et al. Reusing discriminators for encoding: towards unsupervised image-to-image translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8165-8174.
[38] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929.
[39] KIM J, KIM M, KANG H, et al. U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[EB/OL]. [2024-06-25]. https://arxiv.org/abs/1907.10830.
[40] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[EB/OL]. [2024-06-26]. https://arxiv.org/abs/1802.05957.
[41] YOSHIDA Y, MIYATO T. Spectral norm regularization for improving the generalizability of deep learning[EB/OL]. [2024-06-26]. https://arxiv.org/abs/1705.10941.
[42] HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1510-1519.
[43] MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821.
[44] SAGE A, BADURA P. Detection and segmentation of mouth region in stereo stream using YOLOv6 and DeepLab v3+ models for computer-aided speech diagnosis in children[J]. Applied Sciences, 2024, 14(16): 7146.
[45] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
[46] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976.
[47] CAO S, WU Q F, MA L J. TongueSAM: an universal tongue segmentation model based on SAM with zero-shot[C]//Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2023: 4520-4526.
[48] 赵亮, 刘晨, 王春艳. 位置信息增强的TransUnet医学图像分割方法[J]. 计算机科学与探索, 2025, 19(4): 976-988.
ZHAO L, LIU C, WANG C Y. Positional enhancement Trans-Unet for medical image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 976-988. |