[1] SAADNA Y, BEHLOUL A. An overview of traffic sign detection and classification methods[J]. International Journal of Multimedia Information Retrieval, 2017, 6(3): 193-210.
[2] ARDIANTO S, CHEN C J, HANG H M. Real-time traffic sign recognition using color segmentation and SVM[C]//Proceedings of the 2017 International Conference on Systems, Signals and Image Processing. Piscataway: IEEE, 2017: 1-5.
[3] GONZALEZ á, GARRIDO M á, LLORCA D F, et al. Auto-matic traffic signs and panels inspection system using computer vision[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 485-499.
[4] KUO W J, LIN C C. Two-stage road sign detection and recognition[C]//Proceedings of the 2007 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2007: 1427-1430.
[5] WALI S B, HANNAN M A, HUSSAIN A, et al. An automatic traffic sign detection and recognition system based on colour segmentation, shape matching, and SVM[J]. Mathematical Problems in Engineering, 2015(1): 250461.
[6] ZAKLOUTA F, STANCIULESCU B. Warning traffic sign recognition using a HOG-based K-d tree[C]//Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2011: 1019-1024.
[7] KUS M C, GOKMEN M, ETANER-UYAR S. Traffic sign recognition using scale invariant feature transform and color classification[C]//Proceedings of the 2008 23rd International Symposium on Computer and Information Sciences. Piscataway: IEEE, 2008: 1-6.
[8] REN F X, HUANG J S, JIANG R Y, et al. General traffic sign recognition by feature matching[C]//Proceedings of the 2009 24th International Conference on Image and Vision Computing. Piscataway: IEEE, 2009: 409-414.
[9] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32: 323-332.
[10] GIRSHICK R.Fast R-CNN[EB/OL]. [2024-10-14]. https://arxiv.org/abs/1504.08083.
[11] LI X, XU Z H, SHEN X, et al. Detection of cervical cancer cells in whole slide images using deformable and global context aware faster RCNN-FPN[J]. Current Oncology, 2021, 28(5): 3585-3601.
[12] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2961-2969.
[13] HUANG T Y, CHENG M, YANG Y L, et al. Tiny object detection based on YOLOv5[C]//Proceedings of the 5th International Conference on Image and Graphics Processing. New York: ACM, 2022: 45-50.
[14] ZHAO H Y, ZHANG H P, ZHAO Y Y. YOLOv7-sea: object detection of maritime UAV images based on improved YOLOv7[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 233-238.
[15] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015.
[16] CHANG M H, PYUN J Y, AHMAD M B, et al. Modified color co-occurrence matrix for image retrieval[C]//Advances in Natural Computation: the 1st International Conference. Berlin, Heidelberg: Springer, 2005: 43-50.
[17] BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
[18] PARK D K, JEON Y S, WON C S. Efficient use of local edge histogram descriptor[C]//Proceedings of the 2000 ACM Workshops on Multimedia. New York: ACM, 2000: 51-54.
[19] FOGEL I, SAGI D. Gabor filters as texture discriminator[J]. Biological Cybernetics, 1989, 61(2): 103-113.
[20] LIU H P, LIU Y L, SUN F C. Traffic sign recognition using group sparse coding[J]. Information Sciences, 2014, 266: 75-89.
[21] NEWEY W K. Adaptive estimation of regression models via moment restrictions[J]. Journal of Econometrics, 1988, 38(3): 301-339.
[22] ZHONG Z, ZHENG L, KANG G, et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 13001-13008.
[23] 谷明琴, 蔡自兴, 李仪, 等. 基于多模型表示的交通标志识别算法设计[J]. 控制与决策, 2013, 28(6): 844-848.
GU M Q, CAI Z X, LI Y, et al. Traffic sign recognition algorithm design based on multi-modal representation[J]. Control and Decision, 2013, 28(6): 844-848.
[24] WANG J F, CHEN Y, DONG Z K, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853-7865.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[26] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 548-558.
[27] MANZARI O N, KASHIANI H, DEHKORDI H A, et al. Robust transformer with locality inductive bias and feature normalization[J]. Engineering Science and Technology, an International Journal, 2023, 38: 101320.
[28] HAN K, XIAO A, WU E, et al. Transformer in transformer[C]//Advances in Neural Information Processing Systems 34, 2021: 15908-15919.
[29] MINGWIN S, SHISU Y, WANWAG Y, et al. Revolutionizing traffic sign recognition: unveiling the potential of vision transformers[EB/OL]. [2024-10-15]. https://arxiv.org/abs/2404. 19066.
[30] KHALIFA A A, ALAYED W M, ELBADAWY H M, et al. Real-time navigation roads: lightweight and efficient convolutional neural network (LE-CNN) for Arabic traffic sign recognition in intelligent transportation systems (ITS)[J]. Applied Sciences, 2024, 14(9): 3903.
[31] CUI Y, HAN Y, GUO D. TS-DETR: multi-scale DETR for traffic sign detection and recognition[J]. Pattern Recognition Letters, 2025, 190: 147-152.
[32] LIU Y, CHENG D, ZHANG D W, et al. Capsule networks with residual pose routing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2648-2661.
[33] HAN S, ZHOU Z, CHEN J, et al. Uncertainty-aware graph structure learning[EB/OL]. [2025-02-20]. https://arxiv.org/abs/2502.12618. |