计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (5): 1115-1140.DOI: 10.3778/j.issn.1673-9418.2411032
王宁,智敏
出版日期:
2025-05-01
发布日期:
2025-04-28
WANG Ning, ZHI Min
Online:
2025-05-01
Published:
2025-04-28
摘要: 近年来,目标检测算法作为计算机视觉领域中的核心任务,逐渐成为热门研究方向。它使得计算机能够识别和定位图像或视频帧中的目标物体,广泛应用于自动驾驶、生物个体检测、农业检测、医疗影像分析等领域。随着深度学习的发展,通用目标检测算法从传统的目标检测方法转变为基于深度学习下的目标检测方法。其中深度学习下的通用目标检测算法主要分为单阶段目标检测与两阶段目标检测,以单阶段目标检测为切入点,根据采用经典卷积与Transformer两种不同架构,对首个单阶段目标检测算法YOLO系列(YOLOv1~YOLOv11、YOLO主要改进版本)、SSD等和以Transformer为基础架构的DETR系列的主流单阶段检测算法进行分析总结。介绍各个算法的网络结构以及其研究进展,根据各个算法的结构归纳出其特点优势以及局限性,概括目标检测领域主要通用数据集与评价指标,分析各算法以及其改进方法的性能,讨论各算法在不同领域的应用现状,展望单阶段目标检测算法在未来的研究方向。
王宁, 智敏. 深度学习下的单阶段通用目标检测算法研究综述[J]. 计算机科学与探索, 2025, 19(5): 1115-1140.
WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140.
[1] ZHOU X Y, GONG W, FU W L, et al. Application of deep learning in object detection[C]//Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science. Piscataway: IEEE, 2017: 631-634. [2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. [7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. [9] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [10] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974. [11] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[EB/OL]. [2024-11-03]. https://arxiv.org/abs/2410.17725. [12] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-09-23]. https://arxiv.org/abs/1704. 04861. [13] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6848-6856. [14] LU J S, BATRA D, PARIKH D, et al. ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks[EB/OL]. [2024-09-23]. https://arxiv.org/abs/1908.02265. [15] 米增, 连哲. 面向通用目标检测的YOLO方法研究综述[J]. 计算机工程与应用, 2024, 60(21): 38-54. MI Z, LIAN Z. Review of YOLO methods for universal object detection[J]. Computer Engineering and Applications, 2024, 60(21): 38-54. [16] 董甲东, 郭庆虎, 陈琳, 等. 深度学习中单阶段金属表面缺陷检测算法优化综述[J]. 计算机工程与应用, 2025, 61(4): 72-89. DONG J D, GUO Q H, CHEN L, et al. Review on optimization algorithms for one-stage metal surface defect detection in deep learning[J]. Computer Engineering and Applications, 2025, 61(4): 72-89. [17] 陈恒星, 刘一鸣. Anchor-free目标检测算法综述[J]. 机电工程技术, 2024, 53(8): 7-12. CHEN H X, LIU Y M. Overview of anchor-free object detection algorithms[J]. Mechanical & Electrical Engineering Technology, 2024, 53(8): 7-12. [18] 任书玉, 汪晓丁, 林晖. 目标检测中注意力机制综述[J]. 计算机工程, 2024, 50(12): 16-32. REN S Y, WANG X D, LIN H. Review of attention mechanisms in object detection[J]. Computer Engineering, 2024, 50(12): 16-32. [19] 陈金林, 吴一全, 苑玉彬. 无人机视角下目标检测的YOLO系列算法研究进展[J/OL]. 北京航空航天大学学报 [2024-09-19]. https://doi.org/10.13700/j.bh.1001-5965.2024.0420. CHEN J L, WU Y Q, YUAN Y B. Research progress on YOLO series algorithms for target detection from the UAV vision[J/OL]. Journal of Beijing University of Aeronautics and Astronautics [2024-09-19]. https://doi.org/10.13700/j.bh. 1001-5965.2024.0420. [20] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. [21] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [22] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. [23] FARHADI A, REDMON J. YOLOv3: an incremental improvement[EB/OL]. [2024-09-19]. https://arxiv.org/abs/1804. 02767. [24] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. [25] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [26] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2004.10934. [27] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 390-391. [28] MISRA D. Mish: a self regularized non-monotonic activation function[EB/OL]. [2024-09-19]. https://arxiv.org/abs/1908.08681. [29] NELSON J, SOLAWETZ J. YOLOv5 is here: state-of-the-art object detection at 140 FPS[EB/OL]. [2024-09-19]. https:// blog.roboflow.com/yolo v5-is-here/. [30] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-09-19]. https://arxiv.org/abs/2209.02976. [31] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13733-13742. [32] DING X H, CHEN H H, ZHANG X Y, et al. Re-parameterizing your optimizers rather than architectures[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2205.15242. [33] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2207.02696. [34] WANG C Y A O, LIAO H Y M. Designing network design strategies through gradient path analysis[J]. Journal of Information Science & Engineering, 2023, 39(4): 975-995. [35] GALLAGHER J. How to train an ultralytics YOLOv8 oriented bounding box (OBB) model[EB/OL]. [2024-09-26]. https://blog.roboflow.com/train-yolov8-obb-model/. [36] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2402.13616. [37] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2405.14458. [38] AL RABBANI ALIF M, HUSSAIN M. YOLOv1 to YOLOv10: a comprehensive review of YOLO variants and their application in the agricultural domain[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2406.10139. [39] LONG X, DENG K P, WANG G Z, et al. PP-YOLO: an effective and efficient implementation of object detector[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2007.12099. [40] WANG C Y, YEH I H, LIAO H M. You only learn one representation: unified network for multiple tasks[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2105.04206. [41] GE Z. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2107.08430. [42] XU X Z, JIANG Y Q, CHEN W H, et al. DAMO-YOLO: a report on real-time object detection design[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2211.15444. [43] SUN Z, LIN M, SUN X, et al. MAE-DET: revisiting maximum entropy principle in zero-shot NAS for efficient object detection[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 20810-20826. [44] SKALSKI P. How to train YOLO-NAS on a custom dataset [EB/OL]. [2024-09-26]. https://blog.roboflow.com/yolo-nas-how-to-train-on-custom-dataset/. [45] CHU X X, LI L, ZHANG B. Make RepVGG greater again: a quantization-aware approach[EB/OL]. [2024-09-26]. https://arxiv.org/abs/2212.01593. [46] ZHOU Y. A YOLO-NL object detector for real-time detection[J]. Expert Systems with Applications, 2024, 238: 122256. [47] SU P, HAN H Z, LIU M, et al. MOD-YOLO: rethinking the YOLO architecture at the level of feature information and applying it to crack detection[J]. Expert Systems with Applications, 2024, 237: 121346. [48] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1701.06659. [49] LI Z X, YANG L, ZHOU F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1712.00960. [50] 胡焱, 原子昊, 涂晓光, 等. 基于对比学习的改进SSD目标检测算法[J]. 红外技术, 2024, 46(5): 548-555. HU Y, YUAN Z H, TU X G, et al. Improved SSD target detection algorithm based on comparative learning[J]. Infrared Technology, 2024, 46(5): 548-555. [51] CHANDIO A, GUI G, KUMAR T, et al. Precise single-stage detector[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2210.04252. [52] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1904.01355. [53] XU X L, LIANG W Y, ZHAO J H, et al. Tiny FCOS: a lightweight anchor-free object detection algorithm for mobile scenarios[J]. Mobile Networks and Applications, 2021, 26(6): 2219-2229. [54] WANG N, GAO Y, CHEN H, et al. NAS-FCOS: fast neural architecture search for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11943-11951. [55] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10781-10790. [56] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1905.11946. [57] WANG Y F, WANG T, ZHOU X, et al. TransEffiDet: aircraft detection and classification in aerial images based on EfficientDet and transformer[J]. Computational Intelligence and Neuroscience, 2022(1): 2262549. [58] ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1904.07850. [59] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 765-781. [60] LAW H, TENG Y, RUSSAKOVSKY O, et al. CornerNet-Lite: efficient keypoint based object detection[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1904.08900. [61] LYU C Q, ZHANG W W, HUANG H A, et al. RTMDet: an empirical study of designing real-time object detectors[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2212.07784. [62] ALEXEY D. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2010.11929. [63] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[C]// Proceedings of the 9th International Conference on Learning Representations, 2021. [64] DAI X Y, CHEN Y P, YANG J W, et al. Dynamic DETR: end-to-end object detection with dynamic attention[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2968-2977. [65] MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3631-3640. [66] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2201.12329. [67] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13609-13617. [68] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2203.03605. [69] ZHANG M Y, SONG G L, LIU Y, et al. Decoupled DETR: spatially disentangling localization and classification for improved end-to-end object detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6578-6587. [70] ZHANG J Y, HUANG J X, LUO Z P, et al. DA-DETR: domain adaptive detection transformer with information fusion[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 23787-23798. [71] LI F, ZENG A L, LIU S L, et al. Lite DETR: an interleaved multi-scale encoder for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18558-18567. [72] ZHENG D H, DONG W H, HU H L, et al. Less is more: focus attention for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6651-6660. [73] ZHAO C Y, SUN Y F, WANG W H, et al. MS-DETR: efficient DETR training with mixed supervision[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 17027-17036. [74] OUYANG H D. DEYO: DETR with YOLO for end-to-end object detection[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2402.16370. [75] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. [76] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. [77] KKUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale[J]. International Journal of Computer Vision, 2020, 128(7): 1956-1981. [78] SHAO S, LI Z M, ZHANG T Y, et al. Objects365: a large-scale, high-quality dataset for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8430-8439. [79] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2778-2788. [80] 李钟华, 林初俊, 朱恒亮, 等. 基于结构感知和全局上下文信息的小目标检测[J]. 计算机工程与应用, 2024, 60(9): 292-298. LI Z H, LIN C J, ZHU H L, et al. Small object detection based on structure perception and global context information[J]. Computer Engineering and Applications, 2024, 60(9): 292-298. [81] 窦同旭, 曾勇, 杨冲, 等. 改进 YOLOv5 的无人机影像小目标物体识别算法[J]. 建模与仿真, 2023, 12(6): 5395-5407. DOU T X, ZENG Y, YANG C, et al. Improved algorithm for small target object recognition in drone images based on YOLOv5[J]. Modeling and Simulation, 2023, 12(6): 5395-5407. [82] LIU H, MU C P, YANG R X, et al. Research on object detection algorithm based on UVA aerial image[C]//Proceedings of the 2021 7th IEEE International Conference on Network Intelligence and Digital Content. Piscataway: IEEE, 2021: 122-127. [83] CAO L, WANG Q, LUO Y H, et al. YOLO-TSL: a lightweight target detection algorithm for UAV infrared images based on triplet attention and slim-neck[J]. Infrared Physics & Technology, 2024, 141: 105487. [84] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150. PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones[J]. Computer Engineering and Applications, 2024, 60(9): 142-150. [85] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024, 45(14): 629148. YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148. [86] PANG Y, YU W B, XUAN C Z, et al. A large benchmark dataset for individual sheep face recognition[J]. Agriculture, 2023, 13(9): 1718. [87] HAO J Y, ZHANG H M, HAN Y M, et al. Sheep face detection based on an improved RetinaFace algorithm[J]. Animals, 2023, 13(15): 2458. [88] 杨蜀秦, 刘杨启航, 王振, 等. 基于融合坐标信息的改进YOLO V4模型识别奶牛面部[J]. 农业工程学报, 2021, 37(15): 129-135. YANG S Q, LIU Y Q H, WANG Z, et al. Improved YOLO V4 model for face recognition of diary cow by fusing coordinate information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 129-135. [89] HSU W Y, LIN W Y. Ratio-and-scale-aware YOLO for pedestrian detection[J]. IEEE Transactions on Image Processing, 2021, 30: 934-947. [90] WU D M, JIA F, CHANG J H, et al. The 1st-place solution for CVPR 2023 OpenLane topology in autonomous driving challenge[EB/OL]. [2024-10-13]. https://arxiv.org/abs/2306. 09590. [91] 陈禹, 吴雪梅, 张珍, 等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J]. 农业工程学报, 2023, 39(24): 185-194. CHEN Y, WU X M, ZHANG Z, et al. Method for identifying tea diseases in natural environment using improved YOLO-v5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(24): 185-194. [92] 蒋心璐, 陈天恩, 王聪, 等. 大田环境下的农业害虫图像小目标检测算法[J]. 计算机工程, 2024, 50(1): 232-241. JIANG X L, CHEN T E, WANG C, et al. Small object detection algorithm for agricultural pest images in field environments[J]. Computer Engineering, 2024, 50(1): 232-241. [93] SIMON M, MILZ S, AMENDE K, et al. Complex-YOLO: real-time 3D object detection on point clouds[EB/OL]. [2024-10-13]. https://arxiv.org/abs/1803.06199. [94] MARTINSON E, FURLONG B, GILLIES A. Training rare object detection in satellite imagery with synthetic GAN images[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2763-2770. [95] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [96] SALAUDEEN H, ?ELEBI E. Pothole detection using image enhancement GAN and object detection network[J]. Electronics, 2022, 11(12): 1882. [97] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851. [98] FANG H Y, HAN B R, ZHANG S, et al. Data augmentation for object detection via controllable diffusion models[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 1246-1255. [99] GAO W, WAN F, YUE J, et al. Discrepant multiple instance learning for weakly supervised object detection[J]. Pattern Recognition, 2022, 122: 108233. |
[1] | 周楠, 董永权, 闫林克, 金家永, 贺步贵. 融合学生知识状态与混沌萤火虫算法的习题推荐研究[J]. 计算机科学与探索, 2025, 19(6): 1620-1631. |
[2] | 朱佳音, 李杨, 李明, 马金刚. 深度学习在宫颈细胞分割中的应用综述[J]. 计算机科学与探索, 2025, 19(6): 1476-1493. |
[3] | 梁洁欣, 冯跃, 李健忠, 陈涛, 林卓胜, 何盈, 王松柏. 中医体质智能辨识方法的研究综述[J]. 计算机科学与探索, 2025, 19(6): 1455-1475. |
[4] | 吕伏, 郑禹, 齐光尧, 李浩然. 极坐标编解码的轻量化SAR图像舰船斜框检测算法[J]. 计算机科学与探索, 2025, 19(6): 1564-1579. |
[5] | 许德龙, 林民, 王玉荣, 张树钧. 基于大语言模型的NLP数据增强方法综述[J]. 计算机科学与探索, 2025, 19(6): 1395-1413. |
[6] | 李云飞, 魏霞, 蔡鑫, 吕明昱, 罗相涵. TCTP-YOLO:盲人出行的典型障碍物及交通标志检测方法[J]. 计算机科学与探索, 2025, 19(6): 1540-1552. |
[7] | 李国威, 刘静, 曹慧, 姜良. 深度学习在结肠息肉图像分割中的研究综述[J]. 计算机科学与探索, 2025, 19(5): 1198-1216. |
[8] | 杨智勇, 郭洁铷, 郭子杭, 张瑞祥, 周瑜. 道路行人行为轨迹预测研究综述[J]. 计算机科学与探索, 2025, 19(5): 1177-1197. |
[9] | 李少波, 王晓强, 郭利彪, 红英, 王志国. 草类植物无人机遥感图像中深度学习应用综述[J]. 计算机科学与探索, 2025, 19(5): 1157-1176. |
[10] | 李汉章, 严宣辉, 李镇力, 严雨薇, 王廷银. 面向多变量时间序列异常检测的双图注意力网络模型[J]. 计算机科学与探索, 2025, 19(4): 1048-1064. |
[11] | 杨思念, 曹立佳, 杨洋, 郭川东. 基于机器视觉的PCB缺陷检测算法研究综述[J]. 计算机科学与探索, 2025, 19(4): 901-915. |
[12] | 陈鹏, 李旭, 向道岸, 余肖生. 边缘-分割交叉引导的伪装目标检测网络[J]. 计算机科学与探索, 2025, 19(4): 1001-1010. |
[13] | 施宇, 王乐, 姚叶鹏, 毛国君. 基于强化特征金字塔和聚焦损失的小目标检测[J]. 计算机科学与探索, 2025, 19(3): 693-702. |
[14] | 傅裕, 高树辉. 改进YOLOv8s-Pose多人姿态估计轻量化模型研究[J]. 计算机科学与探索, 2025, 19(3): 682-692. |
[15] | 孟祥福, 师光启, 张霄雁, 冷强奎, 方金凤. 基于深度学习的轨迹相似性度量方法研究综述[J]. 计算机科学与探索, 2025, 19(3): 623-644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||