计算机科学与探索

• 学术研究 •    下一篇

极坐标编解码的轻量化SAR图像舰船斜框检测算法

吕伏,郑禹,齐光尧,李浩然   

  1. 1.辽宁工程技术大学 软件学院, 辽宁 葫芦岛 125105
    2.辽宁工程技术大学 基础教学部, 辽宁 葫芦岛 125105

Lightweight SAR image ship oblique frame detection algorithm based on polar coordinate encoding and decoding

LYU Fu,  ZHENG Yu,  QI Guangyao,  LI Haoran   

  1. 1.School of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
    2.Department of Basic Teaching, Liaoning Technical University, Huludao, Liaoning 125105,China

摘要: 针对目前合成孔径雷达(SAR)图像舰船目标斜框检测算法中存在的参数量过大难以满足实时化检测需求以及边界不连续的问题,提出了一种基于极坐标编解码的轻量化SAR舰船目标斜框检测算法。首先,基于ShuffleNetV2的shuffle单元并利用轻量高效的PC卷积和Ghost卷积,提出了卷积协同单元,实现优化卷积操作,减少算法的复杂度。然后,引入极坐标编解码方法,并提出余弦调和IOU加权损失函数,动态调节极坐标编码损失,解决斜框检测存在的边界不连续问题,同时使用双峰最大池化和椭圆二维高斯分布对极坐标编解码方法进行改进,以提高对近岸密集排布舰船的检测精度。最后,提出多尺度条形卷积注意力模块和空间选择特征增强模块,通过获取不同尺度特征信息,以提高网络特征提取能力。在SSDD+和DSSDD数据集上的实验结果表明,该算法分别实现了85.7%和90.6%的检测精度,并在HRSID数据集上进行泛化测试,检测精度可达82.3%。相较于同类算法在检测精度相近的情况下,参数量和浮点运算量低于同类算法的十分之一,仅为0.87MB和1.21GB,检测速度提升14%,可达135FPS,满足实时性检测需求。

关键词: 合成孔径雷达, 舰船目标斜框检测, 深度学习, 多尺度, 特征增强

Abstract: Aiming at the problem that the parameter quantity in the current synthetic aperture radar (SAR) image ship target oblique frame detection algorithm is too large to meet the real-time detection requirements and the problem of boundary discontinuity, a lightweight SAR ship target oblique frame detection algorithm based on polar coordinate encoding and decoding is proposed. Firstly, based on the shuffle unit of ShuffleNetV2 and using lightweight and efficient PC and Ghost convolutions, a convolution collaborative unit is proposed to optimize convolution operations and reduce algorithm complexity. Then, the polar coordinate encoding and decoding method is introduced, and the cosine-harmonized IOU weighted loss function is proposed to dynamically adjust the polar coordinate encoding loss to solve the oblique frame detection boundary discontinuity problem; at the same time, the polar coordinate encoding and decoding method is improved by using double-peak max-pooling and elliptical two-dimensional Gaussian distribution to enhance the detection accuracy for the densely packed ships near shore. Finally, a multi-scale bar convolution attention module and a spatial selection feature enhancement module are proposed to obtain feature information at different scales to improve the network feature extraction capability. Experimental results on the SSDD+ and DSSDD datasets show that the algorithm achieves 85.7% and 90.6% detection accuracy, respectively, and a generalization test on the HRSID dataset with a detection accuracy of up to 82.3%.Compared with similar algorithms with similar detection accuracy, the parameter quantity and floating-point operations are less than one-tenth of similar algorithms, only 0.87MB and 1.21GB, and the detection speed is increased by 14%, up to 135FPS, meeting the real-time detection requirements.

Key words: synthetic aperture radar, ship target oblique frame detection, deep learning, multi- scale, feature enhancement