[1] 侯笑晗, 金国栋, 谭力宁. 基于深度学习的SAR图像舰船目标检测综述[J]. 激光与光电子学进展, 2021, 58(4): 0400005.
HOU X H, JIN G D, TAN L N. Survey of ship detection in SAR images based on deep learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0400005.
[2] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119-131.
HE F S, HE Y, LIU Z G, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131.
[3] LI J W, XU C A, SU H, et al. Deep learning for SAR ship detection: past, present and future[J]. Remote Sensing, 2022, 14(11): 2712.
[4] YANG R, PAN Z R, JIA X X, et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1938-1958.
[5] PAN Z R, YANG R, ZHANG A Z. MSR2N: multi-stage rotational region based network for arbitrary-oriented ship detection in SAR images[J]. Sensors, 2020, 20(8): 2340.
[6] CHEN S Q, ZHANG J, ZHAN R H. R2FA-det: delving into high-quality rotatable boxes for ship detection in SAR images[J]. Remote Sensing, 2020, 12(12): 2031.
[7] SUN K, LIANG Y, MA X R, et al. DSDet: a lightweight densely connected sparsely activated detector for ship target detection in high-resolution SAR images[J]. Remote Sensing, 2021, 13(14): 2743.
[8] CHEN B J, XUE F L, SONG H J. A lightweight arbitrarily oriented detector based on transformers and deformable features for ship detection in SAR images[J]. Remote Sensing, 2024, 16(2): 237.
[9] 苏航, 徐从安, 姚力波, 等. 一种轻量化SAR图像舰船目标斜框检测方法[J]. 航空学报, 2022, 43(S1): 157-164.
SU H, XU C A, YAO L B, et al. A lightweight oriented ship detection method in SAR images[J].?Journal?of?Aeronautics, 2022,?43(S1):?157-164.
[10] YANG X, YAN J C. Arbitrary-oriented object detection with circular smooth label[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 677-694.
[11] YANG X, YAN J C. On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130(5): 1340-1365.
[12] YASIR M, LIU S W, XU M M, et al. Multi-scale ship target detection using SAR images based on improved Yolov5[J]. Frontiers in Marine Science, 2023, 9: 1086140.
[13] YU L, WU H Y, ZHONG Z, et al. TWC-net: a SAR ship detection using two-way convolution and multiscale feature mapping[J]. Remote Sensing, 2021, 13(13): 2558.
[14] YU J M, ZHOU G Y, ZHOU S B, et al. A fast and lightweight detection network for multi-scale SAR ship detection under complex backgrounds[J]. Remote Sensing, 2022, 14(1): 31.
[15] GAO F, HUO Y Y, SUN J P, et al. Ellipse encoding for arbitrary-oriented SAR ship detection based on dynamic key points[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240528.
[16] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[17] BRODIE C, CONSTANTIN A, LUKAS A, et al. Flops for complete intersection Calabi-Yau threefolds[J]. Journal of Geometry and Physics, 2023, 186: 104767.
[18] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[19] HE Y S, GAO F, WANG J, et al. Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846-3859.
[20] ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points[EB/OL]. [2024-03-14]. https://arxiv.org/abs/1904.07850.
[21] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[22] HOU Q B, LU C Z, CHENG M M, et al. Conv2Former: a simple transformer-style ConvNet for visual recognition[EB/OL]. [2024-03-14]. https://arxiv.org/abs/2211.11943.
[23] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems 32, 2019: 8024-8035.
[24] ZHANG T W, ZHANG X L, LI J W, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690.
[25] HU Y X, LI Y N, PAN Z X. A dual-polarimetric SAR ship detection dataset and a memory-augmented autoencoder-based detection method[J]. Sensors, 2021, 21(24): 8478.
[26] WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.
[27] CHICCO D, JURMAN G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation[J]. BMC Genomics, 2020, 21(1): 6.
[28] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[29] YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 2149-2158.
[30] YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163-3171.
[31] HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5602511.
[32] HAN J M, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2786-2795. |