计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (6): 1383-1403.DOI: 10.3778/j.issn.1673-9418.2307069
蒲秋梅,殷帅,李正茂,赵丽娜
出版日期:
2024-06-01
发布日期:
2024-05-31
PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina
Online:
2024-06-01
Published:
2024-05-31
摘要: U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响。深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳。针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结。阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结。讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望。
蒲秋梅, 殷帅, 李正茂, 赵丽娜. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403.
PU Qiumei, YIN Shuai, LI Zhengmao, ZHAO Lina. Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403.
[1] DUFFY S W, TABáR L, YEN A M F, et al. Mammography screening reduces rates of advanced and fatal breast cancers: results in 549, 091 women[J]. Cancer, 2020, 126(13): 2971-2979. [2] DEVITA V T, LAWRENCE T S, ROSENBERG S A. Cancer: principles & practice of oncology: primer of the molecular biology of cancer[M]. [S.l.]: Lippincott Williams & Wilkins, 2012. [3] AKRAM S U, KANNALA J, EKLUND L, et al. Cell segmentation proposal network for microscopy image analysis[M]//Deep Learning and Data Labeling for Medical Applications. Cham: Springer, 2016: 21-29. [4] SUN L, HE J, YIN X, et al. An image segmentation framework for extracting tumors from breast magnetic resonance images[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 185001. [5] ASGARI TAGHANAKI S, ABHISHEK K, COHEN J P, et al. Deep semantic segmentation of natural and medical images: a review[J]. Artificial Intelligence Review, 2021, 54: 137-178. [6] QURESHI I, YAN J, ABBAS Q, et al. Medical image segmentation using deep semantic-based methods: a review of techniques, applications and emerging trends[J]. Information Fusion, 2023, 90: 316-352. [7] BINDHU V. Biomedical image analysis using semantic segmentation[J]. Journal of Innovative Image Processing, 2019, 1(2): 91-101. [8] ROTH H R, SHEN C, ODA H, et al. Deep learning and its application to medical mage segmentation[J]. Medical Imaging Technology, 2018, 36(2): 63-71. [9] 周涛, 侯森宝, 陆惠玲, 等. 探析U-Net的改进机制及其在医学图像分割的应用[J]. 生物医学工程学杂志, 2022, 39(4): 806-825. ZHOU T, HOU S B, LU H L, et al. Exploring and analyzing the improvement mechanism of U-Net and its application in medical image segmentation[J]. Journal of Biomedical Engineering, 2022, 39(4): 806-825. [10] 周涛, 董雅丽, 霍兵强, 等. U-Net网络医学图像分割应用综述[J]. 中国图象图形学报, 2021, 26(9): 2058-2077. ZHOU T, DONG Y L, HUO B Q, et al. U-Net and its applications in medical image segmentation:a review[J]. Journal of Image and Graphics, 2021, 26(9): 2058-2077. [11] HUANG B, TIAN J, ZHANG H, et al. Deep semantic segmentation feature-based radiomics for the classification tasks in medical image analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(7): 2655-2664. [12] SINHA A, DOLZ J. Multi-scale self-guidedattention for medical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 25(1): 121-130. [13] TAWFIK N, ELNEMR H A, FAKHR M, et al. Hybrid pixel-feature fusion system for multi-modal medical images[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(6): 6001-6018. [14] AZAM M A, KHAN K B, SALAHUDDINS, et al. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics[J]. Computers in Biology and Medicine, 2022, 144: 105253. [15] HERMESSI H, MOURALI O, ZAGROUBA E. Multimodal medical image fusion review: theoretical background and recent advances[J]. Signal Processing, 2021, 183: 108036. [16] KUMAR N, VERMA R, SHARMA S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1550-1560. [17] SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2015, 63(7): 1455-1462. [18] BEJNORDI B E, VETA M, VAN DIEST PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. Jama, 2017, 318(22): 2199-2210. [19] BANDI P, GEESSINK O, MANSON Q, et al. From detection of individual metastases to classification of lymph node status at the patient level: the Camelyon17 challenge[J]. IEEE Transactions on Medical Imaging, 2018, 38(2): 550-560. [20] BRANCATI N, ANNICIELLO A M, PATI P, et al. BRACS: a dataset for breast carcinoma subtyping in H&E histology images[J]. arXiv:2111.04740, 2021. [21] MOREIRA I C, AMARAL I, DOMINGUESI, et al. INbreast: toward a full-field digital mammographic database[J]. Academic Radiology, 2012, 19(2): 236-248. [22] 茅枫, 张燕娜, 刘乾宇, 等. 国外公开乳腺影像数据集的现状分析及其启示[J]. 中国医学科学院学报, 2021, 43(2): 271-277. MAO F, ZHANG Y N, LIU Q Y, et al. Analysis and enlightenment of foreign open breast image datasets[J]. Acta Academiae Medicinae Sinicae, 2021, 43(2) :271-277. [23] ROSE C, TURI D, WILLIAMS A, et al. Web services for the DDSM and digital mammography research[C]//Proceedings of the 2006 International Workshop on Digital Mammography, Manchester, Jun 18-21, 2006. Berlin, Heidelberg: Springer, 2006: 376-383. [24] Digital mammography dataset[EB/OL]. [2023-05-16]. http://www.bcsc-research.org/data/ma-mmography_dataset. [25] AL-DHABYANI W, GOMAA M, KHALED H, et al. Dataset of breast ultrasound images[J]. Data in Brief, 2020, 28: 104863. [26] YAP M H, GOYAL M, OSMAN F, et al. Breast ultrasound region of interest detection and lesion localisation[J]. Artificial Intelligence in Medicine, 2020, 107: 101880. [27] ZEISER F A, DA COSTA C A, ZONTA T, et al. Segmentation of masses on mammograms using data augmentation and deep learning[J]. Journal of Digital Imaging, 2020, 33: 858-868. [28] KARTHIGA R, NARASIMHAN K, AMIRTHARAJAN R. Diagnosis of breast cancer for modern mammography using artificial intelligence[J]. Mathematics and Computers in Simulation, 2022, 202: 316-330. [29] RAZALI N F, ISA I S, SULAIMAN S N, et al. High-level features in deeper deep learning layers for breast cancer classification[C]//Proceedings of the 2021 11th IEEE International Conference on Control System, Computing and Engineering, Penang, Aug 27-28, 2021. Piscataway: IEEE, 2021: 170-175. [30] ALYAFI B, DIAZ O, MARTI R. DCGANs for realistic breast mass augmentation in X-ray mammography[C]//Proceedings of the Medical Imaging 2020: Computer-Aided Diagnosis, Houston, Feb 16-19, 2020. San Francisco: SPIE, 2020: 473-480. [31] WU E, WU K, LOTTER W. Synthesizing lesions using contextual GANs improves breast cancer classification on mammograms[J]. arxiv:2006.00086, 2020. [32] CHHIPA P C, UPADHYAY R, PIHLGREN G G, et al. Magnification prior: a self-supervised method for learning representations on breast cancer histopathological images[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa,?Jan 2-7, 2023. Piscataway: IEEE, 2023: 2717-2727. [33] 沈嘉琳, 汪源源, 王涌, 等. 基于灰度阈值分割和动态规划的超声图像乳腺肿瘤边缘提取[J]. 航天医学与医学工程, 2005(4): 281-286. SHEN J L, WANG Y Y, WANG Y, et al. Boundary extraction of ultrasonic breast tumor image based on gray-level threshold segmentation and dynamic programming[J]. Space Medicine & Medical Engineering, 2005(4): 281-286. [34] HOUSSEIN E H, EMAM M M, ALI A A. An efficient multi-level thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm[J]. Expert Systems with Applications, 2021, 185: 115651. [35] 冯宝, 陈业航, 刘壮盛, 等. 结合MRF能量和模糊速度的乳腺癌图像分割方法[J]. 自动化学报, 2020, 46(6): 1188-1199. FENG B, CHEN Y H, LIU Z S, et al. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function[J]. Acta Automatica Sinica, 2020, 46(6): 1188-1199. [36] 周皓阳, 冯宝, 齐菲菲, 等. 结合MRF能量和DCE-MRI时域特征的乳腺癌灶分割算法[J]. 光子学报, 2021, 50(6): 205-216. ZHOU H Y, FENG B, QI F F,et al. Combining MRF energy and DCE-MRI time-domain features for breast tumors segmentation algorithm[J]. Acta Photonica Sinica, 2021, 50(6):205-216. [37] 陈磊, 张凯, 金振成. 数字乳房X射线图像的肿块分割算法研究[J]. 生物医学工程学杂志, 2008, 25(6): 1282-1284. CHEN L, ZHANG K, JIN Z C. Study of mass segmentation algorithm for digital mammogram[J]. Journal of Biomedical Engineering, 2008, 25(6): 1282-1284. [38] AMEER S F, NAYYEF Z T, FAHAD Z H, et al. Using morphological operation and watershed techniques for breast cancer detection[J]. International Journal of Online & Biomedical Engineering, 2020, 16(5): 140. [39] 刘元振, 林伟, 朱玲英, 等. 区域生长法结合多竞争最小二乘拟合算法去除乳腺X线影像图像中胸大肌影[J]. 中国医学影像技术, 2022, 38(6): 923-927. LIU Y Z, LIN W, ZHU L Y,et al. Regional growth method combining with multi-competitive least-squares for removal of pectoralis major in mammographic images[J]. Chinese Journal of Medical Imaging Technology, 2022, 38(6): 923-927. [40] RAY S, DAS A, DHAL K G, et al. Whale optimizer-based clustering for breast histopathology image segmentation[J].International Journal of Swarm Intelligence Research, 2022, 13(1): 1-29. [41] 范虹, 张程程, 侯存存, 等. 结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割[J]. 电子学报, 2019, 47(10): 2149-2157. FAN H, ZHANG C C, HOU C C, et al. Dual-tree complex wavelet transform and improved density peak fast search and clustering method for breast MR image segmentation[J]. Acta Electronica Sinical, 2019, 47(10): 2149-2157. [42] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 3431-3440. [43] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [44] VITTIKOP B S,DHOTRE S R. Automatic segmentation of MRI images for brain tumor using UNet[C]//Proceedings of the 2019 1st International Conference on Advances in Information Technology, Chikmagalur, Jul 25-27, 2019. Piscataway: IEEE, 2019: 507-511. [45] 宋杰, 肖亮, 练智超, 等. 基于深度学习的数字病理图像分割综述与展望[J]. 软件学报, 2021, 32(5): 1427-1460. SONG J, XIAO L, LIAN Z C, et al. Overview and prospect of deep learning for image segmentation in digital pathology [J]. Journal of Software, 2021, 32(5): 1427-1460. [46] LOU A, GUAN S, LOEW M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]//Proceedings of the Medical Imaging 2021: Image Processing, Feb 15-19, 2021. San Francisco: SPIE, 2021: 758-768. [47] ZHU H H, LIU D C, LIU J Y, et al. RMS-SE-UNet: a segmentation method for tumors in breast ultrasound images[C]//Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems, Chengdu, Apr 23-26, 2021. Piscataway: IEEE, 2021: 328-334. [48] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121: 74-87. [49] YU K, CHEN S, CHEN Y. Tumor segmentation in breast ultra-sound image by means of RES path combined with dense connection neural network[J]. Diagnostics, 2021, 11(9): 1565. [50] 秦传波, 宋子玉, 曾军英, 等. 联合多尺度和注意力-残差的深度监督乳腺癌分割[J]. 光学精密工程, 2021, 29(4): 877-895. QIN C B, SONG Z Y, ZENG J Y, et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Optics and Precision Engineering, 2021, 29(4): 877-895. [51] YUAN S, QIU Z, LI P, et al. RMAU-Net: breast tumor segmentation network based on residual depthwise separable convolution and multiscale channel attention gates[J]. Applied Sciences, 2023, 13(20): 11362. [52] CHEN G, DAI Y, ZHANG J. RRCNet: refinement residual convolutional network for breast ultrasound images segmentation[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105601. [53] CHEN G, ZHOU L, ZHANG J, et al. ESKNet: an enhanced adaptive selection kernel convolution for ultrasound breast tumors segmentation[J]. Expert Systems with Applications, 2024: 123265. [54] HAI J, QIAO K, CHEN J, et al. Fully convolutional densenet with multiscale context for automated breast tumor segmentation[J]. Journal of Healthcare Engineering, 2019: 8415485. [55] PI J, QI Y, LOU M, et al. FS-UNet: mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening[J]. Computers in Biology and Medicine, 2021, 137: 104800. [56] LIU G, WANG J, LIU D, et al. A multiscale nonlocal feature extraction network for breast lesion segmentation in ultra-sound images[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5011012. [57] QI W, WU H C, CHAN S C. MDF-Net: a multi-scale dynamic fusion network for breast tumor segmentation of ultra-sound images[J]. IEEE Transactions on Image Processing, 2023, 32: 4842-4855. [58] HAN C, HUANG X, ZHANG Y, et al. ECU-Net: multi-scale salient boundary detection and contrast feature enhancement U-Net for breast ultrasound image segmentation[J]. Signal, Image and Video Processing, 2023, 17(5): 2287-2295. [59] LU Z, SHE C, WANG W, et al. LM-Net: a light-weight and multi-scale network for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 168: 107717. [60] PAN X, LI L, YANG D, et al. An accurate nuclei segmentation algorithm in pathological image based on deep semantic network[J]. IEEE Access, 2019, 7: 110674-110686. [61] 唐浩漾, 王燕, 宋聪, 等. 基于空洞U-Net网络的乳腺细胞图像分割算法[J]. 光电子·激光, 2021, 32(5): 470-476. TANG H Y, WANG Y, SONG C, et al. Breast cell image segmentation algorithm based on dilated U-Net network[J]. Journal of Optoelectronics·Laser, 2021, 32(5): 470-476. [62] CHANG H T, LI J D, ALKHALEEFAH M, et al. 3D dense U-Net-ASPP for MRI imaging segmentation of breast tumors[C]//Proceedings of the 2023 International Conference on Consumer Electronics, Pingtung, China, Jul 17-19, 2023. Piscataway: IEEE, 2023: 847-848. [63] SUN H, LI C, LIU B, et al. AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms[J]. Physics in Medicine & Biology, 2020, 65(5): 055005. [64] LI S, DONG M, DU G, et al. Attention dense-U-Net for automatic breast mass segmentation in digital mammogram[J]. IEEE Access, 2019, 7: 59037-59047. [65] 罗圣钦, 陈金怡, 李洪均. 基于注意力机制的多尺度残差UNet实现乳腺癌灶分割[J]. 计算机应用, 2022, 42(3): 818-824. LUO S Q, CHEN J Y, LI H J. Multiscale residual UNet based on attention mechanism to realize breast cancer lesion segmentation[J]. Journal of Computer Applications, 2022, 42(3): 818-824. [66] ZHU D, WANG Y, YANG M, et al. SU-Next: an image segmentation model of breast tumors based on U-Next and attention mechanisms[J]. Journal of Physics: Conference Series, 2023, 2575(1): 012001. [67] YOU G, YANG X, LI X, et al. EfficientUNet: an efficient solution for breast tumour segmentation in ultrasound images [J]. IET Image Processing, 2024, 18: 523-534. [68] MALEKMOHAMMADI A, SORYANI M, KOZEGAR E. Mass segmentation in automated breast ultrasound using an enhanced attentive UNet[J]. Expert Systems with Applications, 2024: 123095. [69] 徐春燕, 谢嘉伟, 杨春霞, 等. 基于病理穿刺切片组织形态学分析的乳腺癌新辅助化疗疗效预测[J]. 四川大学学报(医学版), 2021, 52(2): 279-285. XU C Y, XIE J W, YANG C X, et al. Prediction of response to neoadjuvant chemotherapy for breast cancer based on histomorphology analysis ofneedle biopsy images[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(2): 279-285. [70] BACCOUCHE A, GARCIA-ZAPIRAIN B, CASTILLO OLEA C, et al. Connected-UNets: a deep learning architecture for breast mass segmentation[J]. NPJ Breast Cancer, 2021, 7(1): 1-12. [71] MISRA S, YOON C, KIM K J, et al. Deep learning-based multimodal fusion network for segmentation and classification of breast cancers using B-mode and elastography ultrasound images[J]. Bioengineering & Translational Medicine, 2022: e10480. [72] QIU H T, SHI C. LM-UNet: lateral MLP augmented U-Net for medical image segmentation[J]. Research Square, 2023: 1-20. [73] CHOWDARY G J, YOAGARAJAH P. EU-Net: enhanced U-shaped network for breast mass segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023: 1-11. [74] IQBAL A, SHARIF M. BTS-ST: swin Transformer network for segmentation and classification of multimodality breast cancer images[J]. Knowledge-Based Systems, 2023, 267: 110393. [75] LI B, SU B, ZHANG X. U2-MNet: an improved neural network for breast tumor segmentation[J]. Journal of Physics: Conference Series, 2023, 2637(1): 012003. [76] ZHONG Y, PIAO Y. Mix Transformer depth-wise separable convolution UNet for breast mass segmentation in mammographic[C]//Proceedings of the 5th International Conference on Artificial Intelligence and Computer Science. San Francisco: SPIE, 2023: 466-472. [77] 霍璐, 胡晓欣, 肖勤, 等. 基于nnU-Net的乳腺DCE-MR图像中乳房和腺体自动分割[J]. 波谱学杂志, 2021, 38(3): 367-380. HUO L, HU X X, XIAO Q, et al. Automatic segmentation of breast and fibroglandular tissues in DCE-MR images based on nnU-Net[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 367-380. [78] YAN Y, LIU Y, WU Y, et al. Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images[J]. Biomedical Signal Processing and Control, 2022, 72: 103299. [79] DAMANIA K, ANGEL ARUL JOTHI J. Graph convolutional neural networks for nuclei segmentation from histopathology images[C]//Proceedings of the 2022 International Conference on Soft Computing and Its Engineering Applications, Changa, Dec 9-10, 2022. Cham: Springer, 2022: 158-169. [80] 谢远志, 闫士举, 魏高峰, 等. 基于U-Net++和对抗性学习网络的乳腺肿块分割[J]. 激光与光电子学进展, 2022, 59(16): 390-396. XIE Y Z, YAN S J, WEI G F, et al. Breast mass segmentation based on U-Net++ and adversarial learning network [J]. Laser & Optoelectronics Progress, 2022, 59(16): 390-396. [81] LIU L, CHENG J, QUAN Q, et al. A survey on U-shaped networks in medical image segmentations[J]. Neurocomputing, 2020, 409: ?244-258. [82] 冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述[J]. 中国图象图形学报, 2022, 27(3): 722-749. FENG L F, CHEN Y, ZHOU T H, et al. Review of human lung and lung lesion regions segmentation methods based on CT images[J]. Journal of Image and Graphics, 2022, 27(3): 722-749. [83] ISAKSSON L J, SUMMERS P, MASTROLEO F, et al. Automatic segmentation with deep learning in radiotherapy[J]. Cancers, 2023, 15(17): 4389. [84] MESE I, INAN N G, KO?ADAGLI O, et al. ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artifical intelligence[J]. Medical Ultrasonography, 2023, 25(4): 375-383. |
[1] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[2] | 利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724. |
[3] | 侯鑫, 王艳, 王绚, 范伟. 全景影像在城市研究中的应用进展综述[J]. 计算机科学与探索, 2024, 18(7): 1661-1682. |
[4] | 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437. |
[5] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[6] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[7] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[8] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[9] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[10] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[11] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[12] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
[13] | 杨超城, 严宣辉, 陈容均, 李汉章. 融合双重注意力机制的时间序列异常检测模型[J]. 计算机科学与探索, 2024, 18(3): 740-754. |
[14] | 申通, 王硕, 李孟, 秦伦明. 深度学习在动物行为分析中的应用研究进展[J]. 计算机科学与探索, 2024, 18(3): 612-626. |
[15] | 薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||