计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (7): 1661-1682.DOI: 10.3778/j.issn.1673-9418.2311083
侯鑫,王艳,王绚,范伟
出版日期:
2024-07-01
发布日期:
2024-06-28
HOU Xin, WANG Yan, WANG Xuan, FAN Wei
Online:
2024-07-01
Published:
2024-06-28
摘要: 全景成像技术的进步,街景图像工具的普及,以及人工智能领域的计算机视觉、机器学习和深度学习技术的快速发展,推动了在城市研究中利用全景影像进行大规模、自动化的判别与解析。上述领域的快速发展促使近20年来全景影像、人工智能和城市研究领域之间涌现了大量交叉成果。借助文献计量工具中常用的CiteSpace和VOSviewer作为分析平台,梳理了全景影像在城市研究中的应用进展。首先利用文献共被引聚类网络与术语时区图,划分了全景影像在城市研究中的三个发展阶段。然后借助合著网络和关键词聚类分析,梳理了各阶段全景影像在城市研究中的合著关系、全景影像的获取方式、图像信息的提取技术,归纳了全景影像在城市研究中的四个主要应用领域:城市建成环境、城市景观环境、城市物理环境和智慧城市。最后在历史分期视域下,剖析了促成全景影像应用领域发展的主要驱动因素,并总结了应用全景影像的城市研究目前存在的挑战和未来的发展趋势。
侯鑫, 王艳, 王绚, 范伟. 全景影像在城市研究中的应用进展综述[J]. 计算机科学与探索, 2024, 18(7): 1661-1682.
HOU Xin, WANG Yan, WANG Xuan, FAN Wei. Review of Application Progress of Panoramic Imagery in Urban Research[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1661-1682.
[1] GAO S, YANG K, SHI H, et al. Review on panoramic imaging and its applications in scene understanding[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-34. [2] KANG Y, ZHANG F, GAO S, et al. A review of urban physical environment sensing using street view imagery in public health studies[J]. Annals of GIS, 2020, 26(3): 261-275. [3] LI Y, PENG L, WU C, et al. Street view imagery (SVI) in the built environment: a theoretical and systematic review[J]. Buildings, 2022, 12(8): 1167. [4] 张丽英, 裴韬, 陈宜金, 等. 基于街景图像的城市环境评价研究综述[J]. 地球信息科学学报, 2019, 21(1): 46-58. ZHANG L Y, PEI T, CHEN Y J, et al. A review of urban environmental assessment based on street view images[J]. Journal of Geo-Information Science, 2019, 21(1): 46-58. [5] BILJECKI F, ITO K. Street view imagery in urban analytics and GIS: a review[J]. Landscape and Urban Planning, 2021, 215: 104217. [6] CINNAMON J, JAHIU L. Panoramic street-level imagery in data-driven urban research: a comprehensive global review of applications, techniques, and practical considerations[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 471. [7] 张帆, 刘瑜. 街景影像——基于人工智能的方法与应用[J]. 遥感学报, 2021, 25(5): 1043-1054. ZHANG F, LIU Y. Street view imagery: methods and applications based on artificial intelligence[J]. Journal of Remote Sensing, 2021, 25(5): 1043-1054. [8] HEBERT M, MACLACHLAN R, CHANG P. Experiments with driving modes for urban robots[C]//SPIE Proceedings 3838: Mobile Robots XIV, Boston, Sep 19, 1999: 140-149. [9] HIRAHARA K, IKEUCHI K. Detection of street-parking vehicles from panoramic street image[C]//Proceedings of the 2003 IEEE International Conference on Intelligent Transpor-tation Systems, Shanghai, Oct 12-15, 2003. Piscataway: IEEE, 2003: 993-998. [10] ?ZYESIL O, VORONINSKI V, BASRI R, et al. A survey of structure from motion[J]. Acta Numerica, 2017, 26: 305-364. [11] TARDIF J-P, PAVLIDIS Y, DANIILIDIS K. Monocular visual odometry in urban environments using an omnidirectional camera[C]//Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, Sep 22-26, 2008. Piscataway: IEEE, 2008: 2531-2538. [12] SCARAMUZZA D, SIEGWART R. Appearance-guided mono-cular omnidirectional visual odometry for outdoor ground vehicles[J]. IEEE Transactions on Robotics, 2008, 24(5): 1015-1026. [13] CORNELIS N, LEIBE B, CORNELIS K, et al. 3D urban scene modeling integrating recognition and reconstruction[J]. International Journal of Computer Vision, 2008, 78(2/3): 121-141. [14] SHI Y, JI S, SHI Z, et al. GPS-supported visual SLAM with a rigorous sensor model for a panoramic camera in outdoor environments[J]. Sensors, 2012, 13(1): 119-136. [15] KELLY C M, WILSON J S, BAKER E A, et al. Using Google street view to audit the built environment: inter-rater reliability results[J]. Annals of Behavioral Medicine, 2013, 45(S1): 108-112. [16] SCARAMUZZA D, FRAUNDORFER F, SIEGWART R. Real-time monocular visual odometry for on-road vehicles with 1-point RANSAC[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, May 12-17, 2009. Piscataway: IEEE, 2009: 4293-4299. [17] BETHLEHEM J R, MACKENBACH J D, BEN-REBAH M, et al. The spotlight virtual audit tool: a valid and reliable tool to assess obesogenic characteristics of the built environment[J]. International Journal of Health Geographics, 2014, 13(1): 52. [18] VANWOLLEGHEM G, VAN DYCK D, DUCHEYNE F, et al. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google street view-based audit[J]. International Journal of Health Geographics, 2014, 13(1): 19. [19] MOONEY S J, BADER M D M, LOVASI G S, et al. Validity of an ecometric neighborhood physical disorder measure constructed by virtual street audit[J]. American Journal of Epidemiology, 2014, 180(6): 626-635. [20] DOERSCH C, SINGH S, GUPTA A, et al. What makes Paris look like Paris?[J]. Communications of the ACM, 2015, 58(12): 103-110. [21] SALESSES P, SCHECHTNER K, HIDALGO C A. The collaborative image of the city: mapping the inequality of urban perception[J]. PLoS One, 2013, 8(7): e68400. [22] NAIK N, PHILIPOOM J, RASKAR R, et al. Streetscore—predicting the perceived safety of one million streetscapes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 793-799. [23] WIELAND M, PITTORE M, PAROLAI S, et al. Estimating building inventory for rapid seismic vulnerability assessment: towards an integrated approach based on multi-source imaging[J]. Soil Dynamics and Earthquake Engineering, 2012, 36: 70-83. [24] PITTORE M, WIELAND M. Toward a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing[J]. Natural Hazards, 2013, 68(1): 115-145. [25] HOANG V-D, HERNANDEZ D C, LE M H, et al. 3D motion estimation based on pitch and azimuth from respective camera and laser rangefinder sensing[C]//Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Nov 3-7, 2013. Piscataway: IEEE, 2013: 735-740. [26] TORII A, HAVLENA M, PAJDLA T. From Google street view to 3D city models[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, Kyoto, Sep 27-Oct 4, 2009. Piscataway: IEEE, 2009: 2188-2195. [27] D??ANNIBALE E, TASSETTI A N, MALINVERNI E S. From panoramic photos to a low-cost photogrammetric workflow for cultural heritage 3D documentation[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-5/W2: 213-218. [28] LI X, ZHANG C, LI W, et al. Assessing street-level urban greenery using Google street view and a modified green view index[J]. Urban Forestry & Urban Greening, 2015, 14(3): 675-685. [29] WANG R, LU Y, WU X, et al. Relationship between eye-level greenness and cycling frequency around metro stations in Shenzhen, China: a big data approach[J]. Sustainable Cities and Society, 2020, 59: 102201. [30] VISHNANI V, ADHYA A, BAJPAI C, et al. Manhole detection using image processing on Google street view imagery[C]//Proceedings of the 2020 3rd International Conference on Smart Systems and Inventive Technology, Tirunelveli, Aug 20-22, 2020. Piscataway: IEEE, 2020: 684-688. [31] CAMPBELL A, BOTH A, SUN Q C. Detecting and mapping traffic signs from google street view images using deep learning and GIS[J]. Computers, Environment and Urban Systems, 2019, 77: 101350. [32] AO Y, WANG J, ZHOU M, et al. Fully convolutional networks for street furniture identification in panorama images[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13: 13-20. [33] REN M, ZHANG X, CHEN X, et al. YOLOv5s-m: a deep learning network model for road pavement damage detection from urban street-view imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 120: 103335. [34] SIOUNTRI K, ANAGNOSTOPOULOS C-N. The classification of cultural heritage buildings in Athens using deep learning techniques[J]. Heritage, 2023, 6(4): 3673-3705. [35] OGAWA Y, ZHAO C, OKI T, et al. Deep learning approach for classifying the built year and structure of individual buildings by automatically linking street view images and GIS building data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1740-1755. [36] SZCZE?NIAK J T, ANG Y Q, LETELLIER-DUCHESNE S, et al. A method for using street view imagery to auto-extract window-to-wall ratios and its relevance for urban-level daylighting and energy simulations[J]. Building and Environment, 2022, 207: 108108. [37] ZHOU H, LIU L, LAN M, et al. Using Google street view imagery to capture micro built environment characteristics in drug places, compared with street robbery[J]. Computers, Environment and Urban Systems, 2021, 88: 101631. [38] PALMER G, GREEN M, BOYLAND E, et al. A deep learning approach to identify unhealthy advertisements in street view images[J]. Scientific Reports, 2021, 11(1): 4884. [39] SPEAKE J, KENNEDY V, LOVE R. Visual and aesthetic markers of gentrification: agency of mapping and tourist destinations[J]. Tourism Geographies, 2023, 25(2/3): 756-777. [40] MA R, WANG W, ZHANG F, et al. Typeface reveals spatial economical patterns[J]. Scientific Reports, 2019, 9(1): 15946. [41] WANG M, HE Y, MENG H, et al. Assessing street space quality using street view imagery and function-driven method: the case of Xiamen, China[J]. ISPRS International Journal of Geo-Information, 2022, 11(5): 282. [42] WANG R, LU Y, ZHANG J, et al. The relationship between visual enclosure for neighbourhood street walkability and elders?? mental health in China: using street view images[J]. Journal of Transport & Health, 2019, 13: 90-102. [43] WANG R, LIU Y, LU Y, et al. The linkage between the perception of neighbourhood and physical activity in Guangzhou, China: using street view imagery with deep learning techniques[J]. International Journal of Health Geographics, 2019, 18(1): 18. [44] DUBEY A, NAIK N, PARIKH D, et al. Deep learning the city: quantifying urban perception at a global scale[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 196-212. [45] YIN L, WANG Z. Measuring visual enclosure for street walkability: using machine learning algorithms and Google street view imagery[J]. Applied Geography, 2016, 76: 147-153. [46] LI X, LI Y, JIA T, et al. The six dimensions of built environment on urban vitality: fusion evidence from multi-source data[J]. Cities, 2022, 121: 103482. [47] NGUYEN Q C, HUANG Y, KUMAR A, et al. Using 164 million google street view images to derive built environment predictors of COVID-19 cases[J]. International Journal of Environmental Research and Public Health, 2020, 17(17): 6359. [48] NGUYEN Q C, SAJJADI M, MCCULLOUGH M, et al. Neighbourhood looking glass: 360o automated characterisation of the built environment for neighbourhood effects research[J]. Journal of Epidemiology and Community Health, 2018, 72(3): 260-266. [49] LI X, ZHANG C, LI W. Building block level urban land-use information retrieval based on Google street view images[J]. GIScience & Remote Sensing, 2017, 54(6): 819-835. [50] GONG Z, MA Q, KAN C, et al. Classifying street spaces with street view images for a spatial indicator of urban functions[J]. Sustainability, 2019, 11(22): 6424. [51] KANG J, K?RNER M, WANG Y, et al. Building instance classification using street view images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 44-59. [52] CAO R, QIU G. Urban land use classification based on aerial and ground images[C]//Proceedings of the 2018 International Conference on Content-Based Multimedia Indexing, La Rochelle, Sep 4-6, 2018. Piscataway: IEEE, 2018: 1-6. [53] FANG F, ZENG L, LI S, et al. Spatial context-aware method for urban land use classification using street view images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192: 1-12. [54] ZHANG Y, LIU P, BILJECKI F. Knowledge and topology: a two layer spatially dependent graph neural networks to identify urban functions with time-series street view image[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 153-168. [55] HUANG Z, QI H, KANG C, et al. An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data[J]. Remote Sensing, 2020, 12(19): 3254. [56] KIM J, KAMARI M, LEE S, et al. Large-scale visual data-driven probabilistic risk assessment of utility poles regarding the vulnerability of power distribution infrastructure systems[J]. Journal of Construction Engineering and Management, 2021, 147(10): 04021121. [57] KALFARISI R, HMOSZE M, WU Z Y. Detecting and geolocating city-scale soft-story buildings by deep machine learning for urban seismic resilience[J]. Natural Hazards Review, 2022, 23(1): 04021062. [58] VO A, BERTOLOTTO M, OFTERDINGER U, et al. In search of basement indicators from street view imagery data: an inves-tigation of data sources and analysis strategies[J]. Kunstliche Intelligenz, 2023, 37: 41-53. [59] PELIZARI P, GEISS C, AGUIRRE P, et al. Automated building characterization for seismic risk assessment using street-level imagery and deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 370-386. [60] GHIONE F, M?LAND S, MESLEM A, et al. Building stock classification using machine learning: a case study for Oslo, Norway[J]. Frontiers in Earth Science, 2022, 10: 886145. [61] STONE H, PUTRINO V, D??AYALA D. Earthquake damage data collection using omnidirectional imagery[J]. Frontiers in Built Environment, 2018, 4: 51. [62] SAKURADA K, OKATANI T. Change detection from a street image pair using CNN features and superpixel segmentation[C]//Proceedings of the British Machine Vision Conference 2015. Swansea: British Machine Vision Association, 2015: 61. [63] YANG Y, LU Y, YANG L, et al. Urban greenery, active school transport, and body weight among Hong Kong children[J]. Travel Behaviour and Society, 2020, 20: 104-113. [64] HELBICH M, YAO Y, LIU Y, et al. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China[J]. Environment International, 2019, 126: 107-117. [65] ZHANG A, ZHAI S, LIU X, et al. Investigating the association between streetscapes and mental health in Zhanjiang, China: using Baidu street view images and deep learning[J]. International Journal of Environmental Research and Public Health, 2022, 19(24):16634. [66] LU Y, YANG Y, SUN G, et al. Associations between overhead-view and eye-level urban greenness and cycling behaviors[J]. Cities, 2019, 88: 10-18. [67] WANG W, XIAO L, ZHANG J, et al. Potential of Internet street-view images for measuring tree sizes in roadside forests[J]. Urban Forestry & Urban Greening, 2018, 35: 211-220. [68] LIU D, JIANG Y, WANG R, et al. Establishing a citywide street tree inventory with street view images and computer vision techniques[J]. Computers Environment And Urban Systems, 2023, 100: 101924. [69] ITAKURA K, HOSOI F. Automatic tree detection from three-dimensional images reconstructed from 360° spherical camera using YOLO v2[J]. Remote Sensing, 2020, 12(6): 988. [70] BERLAND A, ROMAN L A, VOGT J. Can field crews telecommute? Varied data quality from citizen science tree inventories conducted using street-level imagery[J]. Forests, 2019, 10(4): 349. [71] BRANSON S, WEGNER J D, HALL D, et al. From Google maps to a fine-grained catalog of street trees[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 13-30. [72] XIA Y, YABUKI N, FUKUDA T. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning[J]. Urban Forestry & Urban Greening, 2021, 59: 126995. [73] YU X, QI W. Measuring vegetation greenery in park using iPhone panoramic image and a new green vegetation extraction index[J]. Urban Forestry & Urban Greening, 2021, 65: 127310. [74] YAN J, NAGHEDI R, HUANG X, et al. Evaluating simulated visible greenness in urban landscapes: an examination of a midsize US city[J]. Urban Forestry & Urban Greening, 2023, 87: 128060. [75] ZHANG J, HU J, ZHANG X, et al. Towards a fairer green city: measuring unfairness in daily accessible greenery in Chengdu??s central city[J]. Journal of Asian Architecture and Building Engineering, 2023. DOI:10.1080/13467581.2023.2270047. [76] MENG Y, XING H, YUAN Y, et al. Sensing urban poverty: from the perspective of human perception-based greenery and open-space landscapes[J]. Computers Environment and Urban Systems, 2020, 84: 101544. [77] FU X, JIA T, ZHANG X, et al. Do street-level scene perceptions affect housing prices in Chinese megacities? An analysis using open access datasets and deep learning[J]. PLoS One, 2019, 14(5): 0217505. [78] CARRASCO-HERNANDEZ R, SMEDLEY A R D, WEBB A R. Using urban canyon geometries obtained from Google street view for atmospheric studies: potential applications in the calculation of street level total shortwave irradiances[J]. Energy and Buildings, 2015, 86: 340-348. [79] YUE N, ZHANG Z, JIANG S, et al. Deep feature migration for real-time mapping of urban street shading coverage index based on street-level panorama images[J]. Remote Sensing, 2022, 14(8): 1796. [80] DU K, NING J, YAN L. How long is the sun duration in a street canyon? Analysis of the view factors of street canyons[J]. Building and Environment, 2020, 172: 106680. [81] DENG M, YANG W, CHEN C, et al. Street-level solar radiation mapping and patterns profiling using Baidu street view images[J]. Sustainable Cities and Society, 2021, 75: 103289. [82] LIU Y, ZHANG M, LI Q, et al. Investigation on the distribution patterns and predictive model of solar radiation in urban street canyons with panorama images[J]. Sustainable Cities and Society, 2021, 75: 103275. [83] ZHONG T, ZHANG K, CHEN M, et al. Assessment of solar photovoltaic potentials on urban noise barriers using street-view imagery[J]. Renewable Energy, 2021, 168: 181-194. [84] PUYANA-ROMERO V, SOLANGE LOPEZ-SEGURA L, MAFFEI L, et al. Interactive soundscapes: 360 degrees-video based immersive virtual reality in a tool for the participatory acoustic environment evaluation of urban areas[J]. Acta Acustica United with Acustica, 2017, 103(4): 574-588. [85] SUN K, DE COENSEL B, FILIPAN K, et al. Classification of soundscapes of urban public open spaces[J]. Landscape and Urban Planning, 2019, 189: 139-155. [86] QIAN Z, CHEN M, YANG Y, et al. Vectorized dataset of roadside noise barriers in China using street view imagery[J]. Earth System Science Data, 2022, 14(9): 4057-4076. [87] ZHANG K, QIAN Z, YANG Y, et al. Using street view images to identify road noise barriers with ensemble classification model and geospatial analysis[J]. Sustainable Cities and Society, 2022, 78: 103598. [88] ZHAO T, LIANG X, TU W, et al. Sensing urban soundscapes from street view imagery[J]. Computers, Environment and Urban Systems, 2023, 99: 101915. [89] ZHU Y, CHEN Y. A study of noise exposure of traffic-type pocket parks in old urban districts based on audio-visual interaction[J]. Applied Acoustics, 2023, 213: 109628. [90] WU D, GONG J, LIANG J, et al. Analyzing the influence of urban street greening and street buildings on summertime air pollution based on street view image data[J]. ISPRS International Journal of Geo-Information, 2020, 9(9): 500. [91] LU T, MARSHALL J D, ZHANG W, et al. National empirical models of air pollution using microscale measures of the urban environment[J]. Environmental Science & Technology, 2021, 55(22): 15519-15530. [92] QI M, DIXIT K, MARSHALL J D, et al. National land use regression model for NO2 using street view imagery and satellite observations[J]. Environmental Science & Technology, 2022, 56(18): 13499-13509. [93] HECKER S, DAI D, VAN GOOL L. End-to-end learning of driving models with surround-view cameras and route planners[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 449-468. [94] PETROVAI A, NEDEVSCHI S. Semantic cameras for 360-degree environment perception in automated urban driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17271-17283. [95] ZHANG X, LI Z, GONG Y, et al. OpenMPD: an open multi-modal perception dataset for autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2437-2447. [96] ABU ALHAIJA H, MUSTIKOVELA S K, MESCHEDER L, et al. Augmented reality meets computer vision: efficient data generation for urban driving scenes[J]. International Journal of Computer Vision, 2018, 126(9): 961-972. [97] REMATAS K, LIU A, SRINIVASAN P, et al. Urban radiance fields[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 12922-12932. [98] TANCIK M, CASSER V, YAN X, et al. Block-NeRF: scalable large scene neural view synthesis[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 8238-8248. [99] KIM S, KIM D, CHOI S. CityCraft: 3D virtual city creation from a single image[J]. The Visual Computer, 2020, 36(5): 911-924. [100] PARK J, JEON I-B, YOON S-E, et al. Instant panoramic texture mapping with semantic object matching for large-scale urban scene reproduction[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(5): 2746-2756. [101] YANG Z, XIANG D, CHENG Y. VR panoramic technology in urban rail transit vehicle engineering simulation system[J]. IEEE Access, 2020, 8: 140673-140681. [102] KIM S, LEE H. Capturing reality: validation of omnidirectional video-based immersive virtual reality as a streetscape quality auditing method[J]. Landscape and Urban Planning, 2022, 218: 104290. [103] CACIORA T, HERMAN G V, ILIE? A, et al. The use of virtual reality to promote sustainable tourism: a case study of wooden churches historical monuments from Romania[J]. Remote Sensing, 2021, 13(9): 1758. [104] LI Y, YABUKI N, FUKUDA T. Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning[J]. Sustainable Cities and Society, 2022, 86: 104140. [105] ZHENG J Y, SHI M. Mapping cityscapes into cyberspace for visualization[J]. Computer Animation and Virtual Worlds, 2005, 16(2): 97-107. [106] IKEUCHI K, SAKAUCHI M, KAWASAKI H, et al. Constructing virtual cities by using panoramic images[J]. International Journal of Computer Vision, 2004, 58(3): 237-247. [107] O??MAHONY N, CAMPBELL S, CARVALHO A, et al. Deep learning vs. traditional computer vision[C]//Proceedings of the 2019 Computer Vision Conference, Advances in Computer Vision, Las Vegas, Apr 25-26, 2019. Cham: Springer, 2020: 128-144. [108] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [109] 张阳婷,黄德启,王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J].计算机工程与应用, 2023, 59(18): 1-13. ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(18): 1-13. [110] ZHOU B, LAPEDRIZA A, XIAO J, et al. Learning deep features for scene recognition using places database[C]// Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, 2014: 487-495. [111] DOU M, GU Y, FAN H. Incorporating neighborhoods with explainable artificial intelligence for modeling fine-scale housing prices[J]. Applied Geography, 2023, 158: 103032. |
[1] | 叶庆文, 张秋菊. 采用通道像素注意力的多标签图像识别[J]. 计算机科学与探索, 2024, 18(8): 2109-2117. |
[2] | 汪有崧, 裴峻鹏, 李增辉, 王伟. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978. |
[3] | 韩涵, 黄训华, 常慧慧, 樊好义, 陈鹏, 陈姞伽. 心电领域中的自监督学习方法综述[J]. 计算机科学与探索, 2024, 18(7): 1683-1704. |
[4] | 利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724. |
[5] | 蒲秋梅, 殷帅, 李正茂, 赵丽娜. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. |
[6] | 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437. |
[7] | 张泽宇, 王铁君, 郭晓然, 龙智磊, 徐魁. AI绘画研究综述[J]. 计算机科学与探索, 2024, 18(6): 1404-1420. |
[8] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[9] | 曾凡智, 冯文婕, 周燕. 深度学习的自然场景文本识别方法综述[J]. 计算机科学与探索, 2024, 18(5): 1160-1181. |
[10] | 于范, 张菁. 滑窗注意力多尺度均衡的密集行人检测算法[J]. 计算机科学与探索, 2024, 18(5): 1286-1300. |
[11] | 孙水发, 汤永恒, 王奔, 董方敏, 李小龙, 蔡嘉诚, 吴义熔. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
[12] | 王恩龙, 李嘉伟, 雷佳, 周士华. 基于深度学习的红外可见光图像融合综述[J]. 计算机科学与探索, 2024, 18(4): 899-915. |
[13] | 曹传博, 郭春, 李显超, 申国伟. 基于AECD词嵌入的挖矿恶意软件早期检测方法[J]. 计算机科学与探索, 2024, 18(4): 1083-1093. |
[14] | 蓝鑫, 吴淞, 伏博毅, 秦小林. 深度学习的遥感图像旋转目标检测综述[J]. 计算机科学与探索, 2024, 18(4): 861-877. |
[15] | 周燕, 李文俊, 党兆龙, 曾凡智, 叶德旺. 深度学习的三维模型识别研究综述[J]. 计算机科学与探索, 2024, 18(4): 916-929. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||