[1] AMMOUR N, ALHICHRI H, BAZI Y, et al. Deep learning approach for car detection in UAV imagery[J]. Remote Sensing, 2017, 9(4): 312.
[2] WANG L, XIANG L R, TANG L, et al. A convolutional neural network-based method for corn stand counting in the field[J]. Sensors, 2021, 21(2): 507.
[3] SAMBOLEK S, IVASIC-KOS M. Automatic person detection in search and rescue operations using deep CNN detectors[J]. IEEE Access, 2021, 9: 37905-37922.
[4] LI C. Video-based object detection in security monitoring system[D]. Waterloo: University of Waterloo, 2022.
[5] 田鹏, 毛力. 改进YOLOv8的道路交通标志目标检测算法[J]. 计算机工程与应用, 2024, 60(8): 202-212.
TIAN P, MAO L. Improved YOLOv8 object detection algorithm for traffic sign target[J]. Computer Engineering and Applications, 2024, 60(8): 202-212.
[6] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[7] 王殿伟, 胡里晨, 房杰, 等. 基于改进Double-Head RCNN的无人机航拍图像小目标检测算法[J]. 北京航空航天大学学报, 2024, 50(7): 2141-2149.
WANG D W, HU L C, FANG J, et al. Small target detection algorithm based on improved Double-Head RCNN for UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2141-2149.
[8] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
[9] TONG K, WU Y Q, ZHOU F. Recent advances in small object detection based on deep learning: a review[J]. Image and Vision Computing, 2020, 97: 103910.
[10] AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 966-970.
[11] BAI Y C, ZHANG Y Q, DING M L, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer,2018: 210-226.
[12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-01-25]. https://arxiv.org/abs/1804. 02767.
[13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[14] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186.
[15] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2778-2788.
[16] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[18] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[19] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[22] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[23] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[24]LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2209.02976.
[25] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[26] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[27] CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2847- 2854.
[28] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[29] MEHTA S, RASTEGARI M. MobileViT: light-weight, general- purpose, and mobile-friendly vision transformer[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2110.02178.
[30] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2107.08430.
[31] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the 2023 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2023: 443-459.
[32] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[33] HE J B, ERFANI S, MA X J, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2110. 13675.
[34] MA S L, XU Y, MA S L, et al. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2024-01-25]. https://arxiv.org/abs/2307.07662. |