[1] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1653-1660.
[2] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3686-3693.
[3] SUN X, XIAO B, WEI F Y, et al. Integral human pose regression[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 536-553.
[4] LI J F, CHEN T, SHI R Q, et al. Localization with sampling-argmax[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2024: 27236-27248.
[5] WEI S H, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4724-4732.
[6] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 483-499.
[7] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5693-5703.
[8] LI Y J, ZHANG S K, WANG Z C, et al. TokenPose: learning keypoint tokens for human pose estimation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11293-11302.
[9] ZHANG F, ZHU X T, YE M. Fast human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3517-3526.
[10] LI Z, YE J W, SONG M L, et al. Online knowledge distillation for efficient pose estimation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11720-11730.
[11] YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10440-10450.
[12] WANG Y H, LI M Y, CAI H, et al. Lite Pose: efficient architecture design for 2D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13116-13126.
[13] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[14] 闫芬婷, 王鹏, 吕志刚, 等. 基于视频的实时多人姿态估计方法[J]. 激光与光电子学进展, 2020, 57(2): 97-104.
YAN F T, WANG P, LÜ Z G, et al. Real-time multi-person video-based pose estimation[J]. Laser & Optoelectronics Pro-gress, 2020, 57(2): 97-104.
[15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[16] WANG X L, SHRIVASTAVA A, GUPTA A. A-Fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3039-3048.
[17] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[18] PISHCHULIN L, INSAFUTDINOV E, TANG S Y, et al. DeepCut: joint subset partition and labeling for multi person pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4929-4937.
[19] CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112.
[20] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[21] JIN X Q, ZHANG D W, WU Q E, et al. Improved SiamCAR with ranking-based pruning and optimization for efficient UAV tracking[J]. Image and Vision Computing, 2024, 141: 104886.
[22] NING Z P, WANG H, LI S L, et al. YOLOv7-RDD: a lightweight efficient pavement distress detection model[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 6994-7003.
[23] 张剑锐, 魏霞, 张林鍹, 等. 改进YOLO v7的绝缘子检测与定位[J]. 计算机工程与应用, 2024, 60(4): 183-191.
ZHANG J R, WEI X, ZHANG L X, et al. Improving detection and positioning of insulators in YOLO v7[J]. Computer Engineering and Applications, 2024, 60(4): 183-191.
[24] 张利丰, 田莹. 改进YOLOv8的多尺度轻量型车辆目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 129-137.
ZHANG L F, TIAN Y. Improved YOLOv8 multi-scale and lightweight vehicle object detection algorithm[J]. Computer Engineering and Applications, 2024, 60(3): 129-137.
[25] 王红霞, 李枝峻, 顾鹏. 基于YOLOPose的人体姿态估计轻量级网络[J]. 沈阳理工大学学报, 2023, 42(6): 10-16.
WANG H X, LI Z J, GU P. A lightweight network for human pose estimation based on YOLOPose[J]. Journal of Shenyang Ligong University, 2023, 42(6): 10-16.
[26] TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Advances in Neural Information Processing Systems 35, 2022: 9969-9982.
[27] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803.
[28] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10781-10790.
[29] WANG Z J, MA L Z, LIN X, et al. MSGC: a new bottom-up model for salient object detection[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6.
[30] LIN X, WANG Z J, MA L Z, et al. Salient object detection based on multiscale segmentation and fuzzy broad learning[J]. The Computer Journal, 2022, 65(4): 1006-1019.
[31] 赵宏, 冯宇博. 基于CGS-Ghost YOLO的交通标志检测研究[J]. 计算机工程, 2023, 49(12): 194-204.
ZHAO H, FENG Y B. Research on traffic sign detection based on CGS-ghost YOLO[J]. Computer Engineering, 2023, 49(12): 194-204.
[32] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[33] TIAN Y J, SU D, LAURIA S, et al. Recent advances on loss functions in deep learning for computer vision[J]. Neuro-computing, 2022, 497: 129-158.
[34] CAO Z, SIMON T, WEI S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310.
[35] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5385-5394.
[36] CAO X S, SHI Y L, YU H, et al. DEKR: description enhanced knowledge graph for machine learning method recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 203-212.
[37] NEFF C, SHETH A, FURGURSON S, et al. EfficientHRNet: efficient scaling for lightweight high-resolution multi-person pose estimation[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2007.08090. |