[1] WANG X W, XIE L B, PENG L. Double residual network recognition method for falling abnormal behavior[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(9): 1580-1589.
王新文, 谢林柏, 彭力. 跌倒异常行为的双重残差网络识别方法[J]. 计算机科学与探索, 2020, 14(9): 1580-1589.
[2] ZHANG R P, YU Y X, ZHANG K, et al. Research on human action recognition model based on OI-LSTM neural network structure[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1926-1939.
张儒鹏, 于亚新, 张康, 等. 基于OI-LSTM神经网络结构的人类动作识别模型研究[J]. 计算机科学与探索, 2018, 12(12): 1926-1939.
[3] SONG Y F, ZHANG P, LIU L B. Human-machine interaction system with vision-based gesture recognition[J]. Computer Science, 2019, 46(S2): 570-574.
宋一凡, 张鹏, 刘立波. 基于视觉手势识别的人机交互系统[J]. 计算机科学, 2019, 46(S2): 570-574.
[4] INSAFUTDINOV E, ANDRILUKA M, PISHCHULIN L, et al. ArtTrack: articulated multi-person tracking in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1293-1301.
[5] MA M, LI Y B, WU X Q, et al. Human pose tracking based on multi-feature fusion in videos[J]. Journal of Image and Graphics, 2020, 25(7): 1459-1472.
马淼, 李贻斌, 武宪青, 等. 视频中多特征融合人体姿态跟踪[J]. 中国图象图形学报, 2020, 25(7): 1459-1472.
[6] FISCHLER M A, ELSCHLAGER R A. The representation and matching of pictorial structures[J]. IEEE Transactions on Computers, 1973, 22(1): 67-92.
[7] FELZENSZWALB P F, HUTTENLOCHER D P. Pictorial structures for object recognition[J]. International Journal of Computer Vision, 2005, 61(1): 55-79.
[8] YANG Y, RAMANAN D. Articulated pose estimation with flexible mixtures-of-parts[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Com-puter Society, 2011: 1385-1392.
[9] JOHNSON S, EVERINGHAM M. Learning effective human pose estimation from inaccurate annotation[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washing-ton: IEEE Computer Society, 2011: 1465-1472.
[10] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[11] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 1999 International Confer-ence on Computer Vision, Kerkyra, Sep 20-25, 1999. Wash-ington: IEEE Computer Society, 1999: 1150-1157.
[12] EICHNER M, FERRARI V. We are family: joint pose estima-tion of multiple persons[C]//LNCS 6311: Proceedings of the 11th European Conference on Computer Vision, Heraklion, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 228-242.
[13] TOSHEV A, SZEGEDY C. DeepPose: human pose estima-tion via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recogni-tion, Columbus, Jun 23-28, 2014. Washington: IEEE Com-puter Society, 2014: 1653-1660.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural net-works[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1097-1105.
[15] CARREIRA J, AGRAWAL P, FRAGKIADAKI K, et al. Human pose estimation with iterative error feedback[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4733-4742.
[16] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with con-volutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[17] SUN X, SHANG J, LIANG S, et al. Compositional human pose regression[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2621-2630.
[18] TOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 1799-1807.
[19] JAIN A, TOMPSON J, ANDRILUKA M, et al. Learning human pose estimation features with convolutional networks [C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-14.
[20] TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient ob-ject localization using convolutional networks[C]//Proceed-ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 648-656.
[21] ISACK H, HAENE C, KESKIN C, et al. RePose: learning deep kinematic priors for fast human pose estimation[J]. arXiv:2002.03933, 2020.
[22] YANG W, OUYANG W, LI H, et al. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Re-cognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3073-3082.
[23] LAFFERTY J, MCCALLUM A, PEREIRA F, et al. Condi-tional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 282-289.
[24] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolu-tional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4724-4732.
[25] RAMAKRISHNA V, MUNOZ D, HEBERT M, et al. Pose machines: articulated pose estimation via inference machines [C]//LNCS 8690: Proceedings of the 13th European Con-ference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 33-47.
[26] NEWELL A, YANG K, DENG J, et al. Stacked hourglass networks for human pose estimation[C]//LNCS 9912: Pro-ceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 483-499.
[27] LONG J, SHELHAMER E, DARRELL T, et al. Fully con-volutional networks for semantic segmentation[C]//Proceed-ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learn-ing for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[29] CHU X, YANG W, OUYANG W L, et al. Multi-context attention for human pose estimation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5669-5678.
[30] YANG W, LI S, OUYANG W L, et al. Learning feature pyr-amids for human pose estimation[C]//Proceedings of the 2017 International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1290-1299.
[31] KE L P, CHANG M C, QI H G, et al. Multi-scale structure-aware network for human pose estimation[C]//LNCS 11206: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 731-746.
[32] NING G, ZHANG Z, HE Z, et al. Knowledge-guided deep fractal neural networks for human pose estimation[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1246-1259.
[33] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2016: 4278-4284.
[34] ZHANG F, ZHU X T, YE M, et al. Fast human pose estima-tion[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3517-3526.
[35] BULAT A, KOSSAIFI J, TZIMIROPOULOS G, et al. Toward fast and accurate human pose estimation via soft-gated skip connections[J]. arXiv:2002.11098, 2020.
[36] RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[37] BELAGIANNIS V, ZISSERMAN A. Recurrent human pose estimation[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition, Washington, May 30-Jun 3, 2017. Washington: IEEE Com-puter Society, 2017: 468-475.
[38] CHEN Y, SHEN C H, WEI X S, et al. Adversarial PoseNet: a structure-aware convolutional network for human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1221-1230.
[39] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 2234-2242.
[40] CHOU C J, CHIEN J T, CHEN H T, et al. Self adversarial training for human pose estimation[C]//Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Honolulu, Nov 12-15, 2018. Piscataway: IEEE, 2018: 17-30.
[41] WU C M, HU J H, YIN J H. Using improved generative adversarial network for human pose estimation[J]. Com-puter Engineering and Applications, 2020, 56(8): 96-103.
吴春梅, 胡军浩, 尹江华. 利用改进生成对抗网络进行人体姿态识别[J]. 计算机工程与应用, 2020, 56(8): 96-103.
[42] XIAO B, WU H P, WEI Y C, et al. Simple baselines for human pose estimation and tracking[C]//LNCS 11210: Pro-ceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 472-487.
[43] SUN K, XIAO B, LIU D, et al. Deep high-resolution re-presentation learning for human pose estimation[C]//Pro-ceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5693-5703.
[44] PFISTER T, CHARLES J, ZISSERMAN A, et al. Flowing ConvNets for human pose estimation in videos[C]//Pro-ceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1913-1921.
[45] SIMONYAN K, ZISSERMAN A. Two-stream convolu-tional networks for action recognition in videos[C]//Pro-ceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 568-576.
[46] LUO Y, REN J S J, WANG Z X, et al. LSTM pose machines[C]//Proceedings of the 2018 IEEE Conference on Com-puter Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5207-5215.
[47] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[48] ARTACHO B, SAVAKIS A. UniPose: unified human pose est-imation in single images and videos[J]. arXiv:2001.08095, 2020.
[49] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[50] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Confer-ence on Computer Vision, Venice, Oct 22-29, 2017. Wash-ington: IEEE Computer Society, 2017: 2980-2988.
[51] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyr-amid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[52] IQBAL U, GALL J. Multi-person pose estimation with local joint-to-person associations[C]//LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Berlin, Heidelberg: Springer, 2016: 627-642.
[53] FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2353-2362.
[54] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 3711-3719.
[55] LI J F, WANG C, ZHU H, et al. CrowdPose: efficient crowded scenes pose estimation and a new benchmark[C]// Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10863-10872.
[56] ZHANG J, CHEN Z, TAO D. Towards high performance human keypoint detection[J]. arXiv:2002.00537, 2020.
[57] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid net-work for multi-person pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 7103-7112.
[58] PISHCHULIN L, INSAFUTDINOV E, TANG S, et al. Deep-Cut: joint subset partition and labeling for multi-person pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4929-4937.
[59] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, San-tiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[60] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut: a deeper, stronger, and faster multi-person pose estimation model[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 34-50.
[61] CAO Z, SIMON T, WEI S, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1302-1310.
[62] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Repre-sentations, San Diego, May 7-9, 2015: 1-14.
[63] NEWELL A, HUANG Z, DENG J, et al. Associative embed-ding: end-to-end learning for joint detection and grouping[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 2277-2287.
[64] SEKII T. Pose proposal networks[C]//LNCS 11217: Pro-ceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 350-366.
[65] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525.
[66] PAPANDREOU G, ZHU T, CHEN L, et al. PersonLab: per-son pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 282-299.
[67] OSOKIN D. Real-time 2D multi-person pose estimation on CPU: lightweight OpenPose[C]//Proceedings of the 8th In-ternational Conference on Pattern Recognition Applications and Methods, Prague, Feb 19-21, 2019. SciTePress, 2019: 744-748.
[68] HOWARD A, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applica-tions[J]. arXiv:1704.04861, 2017.
[69] KREISS S, BERTONI L, ALAHI A, et al. PifPaf: compo-site fields for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Pisca-taway: IEEE, 2019: 11977-11986.
[70] CHENG B, XIAO B, WANG J, et al. Bottom-up higher-resolution networks for multi-person pose estimation[J]. arXiv:1908.10357, 2019.
[71] NIE X C, FENG J S, ZHANG J F, et al. Single-stage multi-person pose machines[C]//Proceedings of the 2019 Interna-tional Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6951-6960.
[72] JOHNSON S, EVERINGHAM M. Clustered pose and non-linear appearance models for human pose estimation[C]// Proceedings of the British Machine Vision Conference, Aberystwyth, Aug 31-Sep 3, 2010. British Machine Vision Association, 2010: 1-11.
[73] SAPP B, TASKAR B. MODEC: multimodal decomposable models for human pose estimation[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 3674-3681.
[74] ANDRILUKA M, PISHCHULIN L, GEHLER P V, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 3686-3693.
[75] LIN T, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 740-755.
[76] WU J, ZHENG H, ZHAO B, et al. AI challenger: a large-scale dataset for going deeper in image understanding[J]. arXiv:1711.06475, 2017.
[77] ZHANG W Y, ZHU M L, DERPANIS K G, et al. From actemes to action: a strongly-supervised representation for detailed action understanding[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2248-2255.
[78] JHUANG H, GALL J, ZUFFI S, et al. Towards understand-ing action recognition[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 3192-3199.
[79] KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]// Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 2556-2563.
[80] ANDRILUKA M, IQBAL U, INSAFUTDINOV E, et al. PoseTrack: a benchmark for human pose estimation and tracking[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5167-5176.
[81] FERRARI V, MARíN-JIMéNEZ M J, ZISSERMAN A, et al. Progressive search space reduction for human pose estima-tion[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[82] YANG Y, RAMANAN D. Articulated human detection with flexible mixtures of parts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2878-2890.
[83] TIAN Y, LI F D. Research review on human body gesture recognition based on depth data[J]. Computer Engineering and Applications, 2020, 56(4): 1-8.
田元, 李方迪. 基于深度信息的人体姿态识别研究综述[J]. 计算机工程与应用, 2020, 56(4): 1-8.
[84] DENG Y N, LUO J X, JIN F L. Overview of human pose estimation methods based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 22-42.
邓益侬, 罗健欣, 金凤林. 基于深度学习的人体姿态估计方法综述[J]. 计算机工程与应用, 2019, 55(19): 22-42.
[85] YANG L P, SUN Y B, ZHANG H L, et al. Human keypoint matching network based on encoding and decoding residuals [J]. Computer Science, 2020, 47(6): 114-120.
杨连平, 孙玉波, 张红良, 等. 基于编解码残差的人体关键点匹配网络[J]. 计算机科学, 2020, 47(6): 114-120.
[86] QI T, BAYRAMLI B, ALI U, et al. Spatial shortcut network for human pose estimation[J]. arXiv:1904.03141, 2019. |