[1] Xiang Y, Schmidt T, Narayanan V, et al. PoseCNN: a con-volutional neural network for 6D object pose estimation in cluttered scenes[J]. arXiv:1711.00199, 2017.
[2] Li Y, Wang G, Ji X, et al. DeepIM: deep iterative matching for 6d pose estimation[C]//Proceedings of the 2018 Euro-pean Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin: Springer, 2018: 683-698.
[3] Jafari O H, Mustikovela S K, Pertsch K, et al. iPose: instance-aware 6D pose estimation of partly occluded objects[C]// Proceedings of the 14th Asian Conference on Computer Vi-sion, Perth, Dec 4-6, 2018. Berlin: Springer, 2018: 477-492.
[4] Wang C, Xu D, Zhu Y, et al. DenseFusion: 6D object pose estimation by iterative dense fusion[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Re-cognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3343-3352.
[5] Qi C R, Su H, Mo K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 22-25, 2017. Piscataway: IEEE, 2017: 652-660.
[6] Xu D, Anguelov D, Jain A. PointFusion: deep sensor fusion for 3D bounding box estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Piscataway: IEEE, 2018: 244-253.
[7] Do T T, Cai M, Pham T, et al. Deep-6DPose: recovering 6D object pose from a single rgb image[J]. arXiv:1802.10367, 2018.
[8] Kehl W, Manhardt F, Tombari F, et al. SSD-6D: making RGB-based 3D detection and 6D pose estimation great again[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Honolulu, Jul 22-25, 2017. Piscataway: IEEE, 2017: 1521-1529.
[9] Peng S, Liu Y, Huang Q, et al. PVNet: pixel-wise voting net-work for 6DoF pose estimation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4561-4570.
[10] Hu Y, Hugonot J, Fua P, et al. Segmentation-driven 6D object pose estimation[C]//Proceedings of the 2019 IEEE Confer-ence on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3385-3394.
[11] Brachmann E, Krull A, Michel F, et al. Learning 6D object pose estimation using 3D object coordinates[C]//Proceed-ings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin: Springer, 2014: 536-551.
[12] Michel F, Kirillov A, Brachmann E, et al. Global hypothesis generation for 6D object pose estimation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 22-25, 2017. Piscataway: IEEE, 2017: 462-471.
[13] Kehl W, Milletari F, Tombari F, et al. Deep learning of local RGB-D patches for 3D object detection and 6D pose estim-ation[C]//Proceedings of the 14th?European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Berlin: Spr-inger, 2016: 205-220.
[14] Doumanoglou A, Kouskouridas R, Malassiotis S, et al. Rec-overing 6D object pose and predicting next-best-view in the crowd[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 3583-3592.
[15] Shi S, Wang X, Li H. PointRCNN: 3D object proposal gen-eration and detection from point cloud[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 770-779.
[16] Qi C R, Liu W, Wu C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 19-21, 2018. Piscataway: IEEE, 2018: 918-927.
[17] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Berlin: Springer, 2014: 740-755.
[18] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Pro-ceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 2961-2969.
[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 770-778.
[20] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 22-25, 2017. Piscataway: IEEE, 2017: 2881-2890.
[21] Billings G, Johnson-Roberson M. SilhoNet: an RGB meth-od for 6D object pose estimation[J]. IEEE Robotics and Au-tomation Letters, 2019, 4(4): 3727-3734.
[22] Carlson A, Skinner K A, Johnson-Roberson M. Modeling camera effects to improve deep vision for real and synthetic data[J]. arXiv:1803.07721, 2018.
[23] Calli B, Singh A, Walsman A, et al. The YCB object and model set: towards common benchmarks for manipulation research[C]//Proceedings of the 2015 International Confer-ence on Advanced Robotics, Istanbul, Jul 27-31, 2015. Pis-cataway: IEEE, 2015: 510-517.
[24] Hinterstoisser S, Lepetit V, Ilic S, et al. Model based train-ing, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[C]//Proceedings of the 11th Asian Conference on Computer Vision, Daejeon, Nov 5-9, 2012. Berlin: Springer, 2012: 548-562.
[25] Sundermeyer M, Marton Z C, Durner M, et al. Implicit 3D orientation learning for 6D object detection from RGB im-ages[C]//Proceedings of the 15th?European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin: Springer, 2018: 699-715. |