[1] TOMAR V, KUMAR N, SRIVASTAVA A R. Single sample face recognition using deep learning: a survey[J]. Artificial Intelligence Review, 2023, 56(S1): 1063-1111.
[2] LIU W, WANG X. Research advanced in the face recognition[J]. Highlights in Science, Engineering and Technology, 2023, 49: 448-456.
[3] KIM M, JAIN A K, LIU X. AdaFace: quality adaptive margin for face recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 18729-18738.
[4] BOUTROS F, DAMER N, KIRCHBUCHNER F, et al. ElasticFace: elastic margin loss for deep face recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-20, 2022. Piscataway: IEEE, 2022: 1577-1586.
[5] JEEVAN G, ZACHARIAS G C, NAIR M S, et al. An empirical study of the impact of masks on face recognition[J]. Pattern Recognition, 2022, 122: 108308.
[6] MIN R, HADID A, DUGELAY J L. Improving the recognition of faces occluded by facial accessories[C]//Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition, Santa Barbara, Mar 21-23, 2011. Piscataway: IEEE, 2011: 442-447.
[7] PARK S, LEE H, YOO J H, et al. Partially occluded facial image retrieval based on a similarity measurement[J]. Mathematical Problems in Engineering, 2015. DOI: 10.1155/2015/217568.
[8] LV J J, SHAO X H, HUANG J S, et al. Data augmentation for face recognition[J]. Neurocomputing, 2017, 230: 184-196.
[9] TRIGUEROS D S, MENG L, HARTNETT M. Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss[J]. Image and Vision Computing, 2018, 79: 99-108.
[10] HE M, ZHANG J, SHAN S, et al. Locality-aware channel-wise dropout for occluded face recognition[J]. IEEE Transactions on Image Processing, 2021, 31: 788-798.
[11] HUBER M, BOUTROS F, KIRCHBUCHNER F, et al. Mask-invariant face recognition through template-level knowledge distillation[C]//Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition, Jodhpur, Dec 15-18, 2021. Piscataway: IEEE, 2021: 1-8.
[12] HAO S, CHEN C, CHEN Z, et al. A unified framework for masked and mask-free face recognition via feature rectification[C]//Proceedings of the 2022 IEEE International Conference on Image Processing, Bordeaux, Oct 16-19, 2022. Piscataway: IEEE, 2022: 726-730.
[13] CHEN Y A, CHEN W C, WEI C P, et al. Occlusion-aware face inpainting via generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 1202-1206.
[14] ZHAO F, FENG J, ZHAO J, et al. Robust LSTM-auto-encoders for face de-occlusion in the wild[J]. IEEE Transactions on Image Processing, 2017, 27(2): 778-790.
[15] HU B, ZHENG Z, LIU P, et al. Unsupervised eyeglasses removal in the wild[J]. IEEE Transactions on Cybernetics, 2020, 51(9): 4373-4385.
[16] WU Y, SINGH V, KAPOOR A. From image to video face inpainting: spatial-temporal nested GAN (STN-GAN) for usability recovery[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Washington: IEEE Computer Society, 2020: 2385-2394.
[17] JU Y J, LEE G H, HONG J H, et al. Complete face recovery GAN: unsupervised joint face rotation and de-occlusion from a single-view image[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2022. Piscataway: IEEE, 2022: 1173-1183.
[18] DING F, PENG P, HUANG Y, et al. Masked face recognition with latent part detection[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle Oct 12-16, 2020. New York: ACM, 2020: 2281-2289.
[19] WAN W, CHEN J. Occlusion robust face recognition based on mask learning[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3795-3799.
[20] SONG L, GONG D, LI Z, et al. Occlusion robust face recognition based on mask learning with pairwise differential siamese network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 773-782.
[21] QIU H, GONG D, LI Z, et al. End2End occluded face recognition by masking corrupted features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(10): 6939-6952.
[22] ZENG D, VELDHUIS R, SPREEUWERS L, et al. Occlusion-invariant face recognition using simultaneous segmentation[J]. IET Biometrics, 2021, 10(6): 679-691.
[23] QIN X, ZHANG Z, HUANG C, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[24] DENG J, GUO J, YANG J, et al. ArcFace: additive angular margin loss for deep face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 5962-5979.
[25] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944.
[26] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Italy, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[27] PENG C, ZHANG X, YU G, et al. Large kernel matters—improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1743-1751.
[28] SHI W, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1874-1883.
[29] MASI I, MATHAI J, ABDALMAGEED W. Towards learning structure via consensus for face segmentation and parsing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5507-5517.
[30] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[31] YI D, LEI Z, LIAO S, et al. Learning face representation from scratch[EB/OL]. [2023-04-03]. https://arxiv.org/abs/1411. 7923.
[32] ANWAR A, RAYCHOWDHURY A. Masked face recognition for secure authentication[EB/OL]. [2023-04-03]. https://arxiv.org/abs/2008.11104.
[33] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[C]//Proceedings of the 2008 Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, Oct 17, 2008: 617-624.
[34] WANG Z, HUANG B, WANG G, et al. Masked face recognition dataset and application[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(2): 298-304.
[35] GUO Y, ZHANG L, HU Y, et al. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 87-102.
[36] WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 5265-5274.
[37] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |