[1] MA X, ZHANG Y, ZHANG W, et al. SDWBF algorithm: a novel pedestrian detection algorithm in the aerial scene[J]. Drones, 2022, 6(3): 76.
[2] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7380-7399.
[3] HU Q, LI L, DUAN J, et al. Object detection algorithm of UAV aerial photography image based on anchor-free algorithms[J]. Electronics, 2023, 12(6): 1339.
[4] SHEN S, ZHANG X, YAN W, et al. An improved UAV target detection algorithm based on ASFF-YOLOv5s[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10773-10789.
[5] LI H, DONG Y, LIU Y, et al. Design and implementation of UAVs for bird’s nest inspection on transmission lines based on deep learning[J]. Drones, 2022, 6(9): 252.
[6] HONG T, YANG Q, WANG P, et al. Multitarget real-time tracking algorithm for UAV IoT[J]. Wireless Communications and Mobile Computing, 2021. DOI:10.1155/2021/9999596.
[7] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 132-135.
[8] CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1483-1498.
[9] XIN F, ZHANG H, PAN H. Hybrid dilated multilayer Faster RCNN for object detection[J]. The Visual Computer, 2024,40(1): 393-406.
[10] SHARMA V K, MIR R N. Saliency guided Faster-RCNN (SGFr-RCNN) model for object detection and recognition[J]. Journal of King Saud University (Computer and Information Sciences), 2022, 34(5): 1687-1699.
[11] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2015: 1440-1448.
[12] ZHANG K H, SHEN H K. Solder joint defect detection in the connectors using improved Faster-RCNN algorithm[J]. Applied Sciences, 2021, 11(2): 576.
[13] YANG A M, JIANG T Y, HAN Y, et al. Research on application of on-line melting in-SITU visual inspection of iron ore powder based on Faster R-CNN[J]. Alexandria Engineering Journal, 2022, 61(11): 8963-8971.
[14] KUMAR A, MANIKANDAN R. Brain tumor detection using deep neural network-based classifier[C]//Proceedings of the 2022 International Conference on Innovative Computing and Communications. Singapore: Springer, 2022: 173-181.
[15] GUO F, QIAN Y, RIZOS D, et al. Automatic rail surface defects inspection based on Mask R-CNN[J]. Transportation Research Record, 2021, 2675(11): 655-668.
[16] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2980-2988.
[17] REN J S, WANG Y. Overview of object detection algorithms using convolutional neural networks[J]. Journal of Computer and Communications, 2022, 10(1): 115-132.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[19] 李娟莉, 魏代良, 李博, 等. 基于深度学习轻量化的改进SSD煤矸快速分选模型[J]. 东北大学学报(自然科学版), 2023, 44(10): 1474-1480.
LI J L, WEI D L, LI B, et al. Improved SSD rapid separation model of coal gangue based on deep learning and light-weighting[J]. Journal of Northeastern University (Natural Science), 2023, 44(10): 1474-1480.
[20] JIANG P Y, ERGU D, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[21] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: impro-ved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-18, 2021. Piscataway: IEEE, 2021: 2778-2788.
[22] 王鹏飞, 黄汉明, 王梦琪. 改进 YOLOv5 的复杂道路目标检测算法[J]. 计算机工程与应用, 2022, 58(17): 81-92.
WANG P F, HUANG H M, WANG M Q. Complex road target detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(17): 81-92.
[23] 宋怀波, 马宝玲, 尚钰莹, 等. 基于YOLO v7-ECA模型的苹果幼果检测[J]. 农业机械学报, 2023, 54(6): 233-242.
SONG H B, MA B L, SHANG Y Y, et al. Detection of young apple fruits based on the YOLO v7-ECA model[J]. Journal of Agricultural Machinery, 2023, 54(6): 233-242.
[24] 陈占龙, 李双江, 徐永洋, 等. 高分影像密集建筑物Correg-YOLOv3检测方法[J]. 测绘学报, 2022, 51(12): 2531-2540.
CHEN Z L, LI S J, XU Y Y, et al. Dense building detection in high-resolution remote sensing imagery using Correg-YOLOv3[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2531-2540.
[25] 苏俊楷, 段先华, 叶赵兵. 改进YOLOv5算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on corn disease detection based on improved YOLOv5 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941.
[26] ZHANG J, WAN G, JIANG M, et al. Small object detection in UAV image based on improved YOLOv5[J]. Systems Science & Control Engineering, 2023, 11(1): 2247082.
[27] 徐光达, 毛国君. 多层级特征融合的无人机航拍图像目标检测[J]. 计算机科学与探索, 2023, 17(3): 635-645.
XU G D, MAO G J. Aerial image object detection of UAV based on multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 635-645.
[28] 李安达, 吴瑞明, 李旭东. 改进YOLOv7的小目标检测算法研究[J]. 计算机工程与应用, 2024, 60(1): 122-134.
LI A D, WU R M, LI X D. Research on improving YOLOv7’s small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 122-134.
[29] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[30] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOV8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190.
[31] 吴建成, 郭荣佐, 成嘉伟, 等. 注意力特征融合的快速遥感图像目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 207-216.
WU J C, GUO R Z, CHENG J W, et al. Fast remote sensing image object detection algorithm based on attention feature fusion[J]. Computer Engineering and Applications, 2024, 60(1): 207-216.
[32] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[33] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13713-13722.
[34] BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]//Proceedings of the 27th International Conference on Machine Learning, Haifa, Jun 21-24, 2010: 111-118.
[35] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the 2022 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2022: 443-459.
[36] CHEN J, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPs for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[37] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10886-10895.
[38] BRODIE C, CONSTANTIN A, LUKAS A, et al. Flops for complete intersection Calabi-Yau threefolds[J]. Journal of Geometry and Physics, 2023, 186: 104767.
[39] LEE Y, PARK J, LEE C O. Two-level group convolution[J]. Neural Networks, 2022, 154: 323-332.
[40] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 213-226. |