[1] HONG M, JUNG J J. Multi-sided recommendation based on social tensor factorization[J]. Information Sciences, 2018, 447: 140-156.
[2] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438.
ZHANG Y Z, RONG L, SONG D W, et al. A survey on multimodal sentiment analysis[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(5): 426-438.
[3] PORIA S, CAMBRIA E, HAZARIKA D, et al. Multi-level multiple attentions for contextual multimodal sentiment analysis[C]//Proceedings of the 2017 IEEE International Conference on Data Mining, New Orleans, Nov 18-21, 2017. Washington: IEEE Computer Society, 2017: 1033-1038.
[4] 刘继明, 张培翔, 刘颖, 等. 多模态的情感分析技术综述 [J]. 计算机科学与探索, 2021, 15(7): 1165-1182.
LIU J M, ZHANG P X, LIU Y, et al. Summary of multi-modal sentiment analysis technology[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1165-1182.
[5] FU Z W, LIU F, XU Q, et al. NHFNET: a non-homogeneous fusion network for multimodal sentiment analysis[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6.
[6] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analy-sis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[7] ZHANG L, WANG S, LIU B. Deep learning for sentiment analysis: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(4): e1253.
[8] 谭荧, 张进, 夏立新. 社交媒体情境下的情感分析研究综述[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
TAN Y, ZHANG J, XIA L X. A survey of sentiment analysis on social media[J]. Data Analysis and Knowledge Discovery, 2020, 4(1): 1-11.
[9] 刘路路, 杨燕, 王杰. ABAFN: 面向多模态的方面级情感分析模型[J]. 计算机工程与应用, 2022, 58(10): 193-199.
LIU L L, YANG Y, WANG J. ABAFN: aspect-based sentiment analysis model for multimodal[J]. Computer Engineering and Applications, 2022, 58(10): 193-199.
[10] HOU M, TANG J, ZHANG J, et al. Deep multimodal multi-linear fusion with high-order polynomial pooling[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 12156-12166.
[11] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Sep 9-11, 2017. Stroudsburg: ACL, 2017: 1103-1114.
[12] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 2018 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2247-2256.
[13] ZADEH A, LIANG P P, MAZUMDER N, et al. Memory fusion network for multi-view sequential learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5634-5641.
[14] TSAI Y H H, LIANG P P, ZADEH A, et al. Learning factorized multimodal representations[J]. arXiv:1806.06176v1, 2018.
[15] HAZARIKA D, ZIMMERMANN R, PORIA S, et al. MISA: modality-invariant and -specific representations for multimodal sentiment analysis[J]. arXiv:2005.03545, 2020.
[16] RAHMAN W, HASAN M K, LEE S, et al. Integrating multimodal information in large pretrained transformers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 2359-2369.
[17] YU W M, XU H, YUAN Z Q, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 10790-10797.
[18] TSAI Y H, BAI S J, LINAG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 6558-6569.
[19] TANG D, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1422-1432.
[20] ZADEH A, LIANG P P, PORIA S, et al. Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the 2018 32nd AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 5642-5649.
[21] DEGOTTEX G, KANE J, DRUGMAN T, et al. COVAREP—a collaborative voice analysis repository for speech technologies[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 960-964.
[22] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25- 29, 2014. Stroudsburg: ACL, 2014: 1746-1751.
[23] 马亚雄. 基于语音和面部表情的情感识别方法研究[D]. 武汉: 华中科技大学, 2021.
MA Y X. Research on emotion recognition based on speech and facial expressions[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[25] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE Intelligent Systems, 2016, 31(6): 82-88.
[26] ZADEH A, LIANG P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 2236-2246.
[27] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized auto-regressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec?8-14, 2019: 5753-5763. |