计算机科学与探索

• 学术研究 •    下一篇

面向多变量时间序列异常检测的双图注意力网络模型

李汉章,严宣辉,李镇力,严雨薇,王廷银   

  1. 1. 福建师范大学 计算机与网络空间安全学院, 福州 350117
    2. 福建师范大学 福建省环境监测物联网实验室, 福州 350117
    3. 福建师范大学协和学院, 福州 350117
    4. 福建师范大学 光电与信息工程学院, 福州 350007

Dual Graph Attention Model for Multivariate Time Series Anomaly Detection

LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin   

  1. 1. School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou 350117, China
    2. Fujian Environmental Monitoring Internet of Things Laboratory, Fujian Normal University, Fuzhou 350117, China
    3. Concord University College Fujian Normal University, Fuzhou 350117, China
    4. College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China

摘要: 时间序列异常检测在时序任务中属于经典研究领域,并已在学术界和工业界取得了一系列研究成果。针对多变量时间序列数据中蕴含的多角度深层特征和内在复杂依赖关系,提出一种融合时空特征的异常检测模型。该模型采用图注意力网络结构,由时间图模块(T-GAT)和空间图模块(F-GAT)组成。T-GAT构建一种单向加权图,图的边表示时间依赖特性,以此来模拟时间图结构的先验信息并融入图网络中获取时间依赖关系。F-GAT将时间序列转换为以幅值表示的频域序列,通过建立全局双向加权图来模拟多变量之间的关联关系,并通过正则化来维护邻居节点的稀疏性,以此来保证对空间关系的准确捕捉。同时模型引入多维注意力机制确保对不同特征的深层信息进行有效挖掘和利用。最后,由门控循环单元进一步处理时空信息并融合为全面特征,并通过预测值与观测值的差异来判定异常。实验结果表明,该模型以4个公共数据集上优异的F1分数在12个对比模型中实现先进的性能,并在消融实验中证实了同时建模时空关系的先验双图结构模式和注意力机制有效提升了异常检测精度,可以有效地识别时间序列数据中的异常情况。

关键词: 多变量时间序列, 异常检测, 深度学习, 时空信息, 图注意力网络

Abstract: Time series anomaly detection is a well-established research area within sequential tasks, achieving significant results in both academia and industry. Addressing the multi-dimensional deep features and complex inherent dependencies in multivariate time series data, a novel anomaly detection model integrating spatiotemporal features is proposed. The model employs a graph attention network structure composed of a Temporal Graph Attention Network (T-GAT) and a Spatial Graph Attention Network (F-GAT). T-GAT constructs a unidirectional weighted graph where edges represent temporal dependencies, simulating prior information about the temporal graph structure and integrating it into the network to capture time-related relationships. F-GAT converts time series into frequency domain sequences represented by amplitudes and establishes a global bi-directional weighted graph to simulate associations between multivariate elements, using regularization to maintain sparsity among neighboring nodes and ensure accurate capture of spatial relationships. The model incorporates a multi-dimensional attention mechanism to effectively mine and utilize deep features across different characteristics. A Gated Recurrent Unit further processes the spatiotemporal information, integrating it into comprehensive features, with anomalies identified by differences between predicted and observed values. Experimental results on four public datasets demonstrate that the model achieves advanced performance among twelve comparison models with superior F1 scores, and ablation studies confirm that the dual graph structure and attention mechanisms significantly enhance anomaly detection accuracy, effectively identifying anomalies in time series data.

Key words: Multivariate Time Series, Anomaly Detection, Deep Learning, Spatiotemporal Information, Graph Attention Networks