计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (3): 623-644.DOI: 10.3778/j.issn.1673-9418.2404006

• 前沿·综述 • 上一篇    下一篇

基于深度学习的轨迹相似性度量方法研究综述

孟祥福, 师光启, 张霄雁, 冷强奎,方金凤   

  1. 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
  • 出版日期:2025-03-01 发布日期:2025-02-28

Survey on Deep Learning Based Trajectory Similarity Measurement Approaches

MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng   

  1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • Online:2025-03-01 Published:2025-02-28

摘要: 移动通信和传感设备技术的发展与应用,产生了大量轨迹数据,这些数据呈现出高维异构性、多粒度性和不确定性等特征,这使得传统基于点对匹配的轨迹相似性度量方法难以适用。近年来,研究者将深度学习技术用于轨迹相似性度量,旨在挖掘更多轨迹特征,提高计算效率,增强模型鲁棒性。对近年来基于深度学习的轨迹相似性度量方法进行系统性综述。阐述轨迹的相关定义;根据相似性度量方法分类框架,从度量表示形式(即序列表示与图表示)和学习策略(即表示学习、度量学习与对比学习)两个角度综述相关方法。从轨迹数据预处理、嵌入表示学习和相似性度量三个方面,对上述方法的实现原理及其特点进行详细对比分析;阐述了基于深度学习的轨迹相似性度量方法的常用数据集和评估指标,并对学习模型的来源、评估指标、时间复杂度和应用场景进行了归纳总结。分析了当前轨迹相似性度量方法所面临的挑战并对未来研究方向进行了展望。

关键词: 轨迹相似性度量, 深度学习, 度量表示形式, 学习策略

Abstract: The development and application of mobile communication and sensing device technology have generated a large amount of trajectory data, which presents characteristics such as high-dimensional heterogeneity, multi-granularity, and uncertainty, which makes traditional trajectory similarity measurement methods based on point pair matching difficult to apply. In recent years, deep learning techniques have been applied to measuring trajectory similarity, aiming to mine more trajectory features, improve computational efficiency, and enhance model robustness. This paper systematically reviews recent trajectory similarity measurement methods based on deep learning. Firstly, it explains the relevant definitions of trajectories. Then, it provides an overview of these methods from two perspectives: metric representation forms (i.e. sequence representation and graph representation) and learning strategies (i.e. representation learning, metric learning, and contrastive learning). Furthermore, it conducts a detailed and comparative analysis on the implementation principles and characteristics of these methods from three aspects: trajectory data preprocessing, embedding representation learning, and similarity measurement. Afterwards, the commonly used datasets and evaluation metrics for trajectory similarity measurement methods based on deep learning are analyzed, and the sources, evaluation metrics, time complexity, and application scenarios of the learning model are summarized. Finally, it analyzes the challenges faced by trajectory similarity measurement methods and prospects future research directions.

Key words: trajectory similarity measurement, deep learning, metric representation form, learning strategy