计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (3): 559-581.DOI: 10.3778/j.issn.1673-9418.2405086
蒙秀扬,王世屹,李渡渡,王春玲
出版日期:
2025-03-01
发布日期:
2025-02-28
MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling
Online:
2025-03-01
Published:
2025-02-28
摘要: 近年来,社交媒体平台成为人类发布情感甚至是自杀意念、企图和行为的崭新阵地,并且成为自杀意念检测的重要数据平台和关键评估依据。随着人工智能技术的兴起,关于机器学习在社交媒体用户自杀意念检测中的应用研究成为热点。但在国内,该领域相关研究较为匮乏,尚未形成完整体系。为系统梳理其研究现状及发展脉络,对机器学习技术赋能自杀意念检测的研究进行了全面总结。概述了自杀意念检测的定义、流程、常见方法及评价指标,总结了目前自杀意念检测任务中常用的数据集和现有特征工程及其技术。分别从传统的机器学习和深度学习的角度对自杀意念检测进行了系统总结,对比分析了每种方法的关键技术、核心思想及优缺点。归纳了当前该领域中亟待解决的问题及创新解决方法,特别介绍了ChatGPT等大语言模型、多模态模型在该领域的应用。讨论了机器学习在社交媒体自杀意念检测应用研究中的局限性,并提出了未来的研究方向,以期进一步推动形成数据驱动、人机协同、跨学科融合、跨文化畛域的数智化自杀意念检测新范式。
蒙秀扬, 王世屹, 李渡渡, 王春玲. 机器学习在社交媒体用户自杀意念检测中的应用综述[J]. 计算机科学与探索, 2025, 19(3): 559-581.
MENG Xiuyang, WANG Shiyi, LI Dudu, WANG Chunling. Review on Application of Machine Learning in Detecting Suicidal Ideation for Social Media Users[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 559-581.
[1] ZHANG T L, YANG K L, JI S X, et al. Emotion fusion for mental illness detection from social media: a survey[J]. Information Fusion, 2023, 92: 231-246. [2] World Health Organization. World health statistics 2024: monitoring health for the SDGs, sustainable development goals[M]. Geneva: World Health Organization, 2024. [3] FRANKLIN J C, RIBEIRO J D, FOX K R, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychological Bulletin, 2017, 143(2): 187-232. [4] ALDHYANI T H H, ALSUBARI S N, ALSHEBAMI A S, et al. Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models[J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12635. [5] XUE Y Y, LI Q, WU T, et al. Incorporating stress status in suicide detection through microblog[J]. Computer Systems Science and Engineering, 2019, 34(2): 65-78. [6] LINDH Å U, BECKMAN K, CARLBORG A, et al. Predicting suicide: a comparison between clinical suicide risk assessment and the suicide intent scale[J]. Journal of Affective Disorders, 2020, 263: 445-449. [7] CALEAR A L, BATTERHAM P J. Suicidal ideation disclosure: patterns, correlates and outcome[J]. Psychiatry Research, 2019, 278: 1-6. [8] 王呈珊, 宋新明, 朱廷劭, 等. 一位自杀博主遗言评论留言的主题分析[J]. 中国心理卫生杂志, 2021, 35(2): 121-126. WANG C S, SONG X M, ZHU T S, et al. An analysis of the theme of a suicide blogger’s comment[J]. Chinese Mental Health Journal, 2021, 35(2): 121-126. [9] SIERRA G, ANDRADE-PALOS P, BEL-ENGUIX G, et al. Suicide risk factors: a language analysis approach in social media[J]. Journal of Language and Social Psychology, 2022, 41(3): 312-330. [10] SHAH S, KADAM S, PANDHARE S, et al. Suicidal thoughts prediction from social media posts using machine learning and deep learning[J]. Quest Journal of Electronics and Communication Engineering Research, 2022, 8(5): 64-71. [11] DEWANGAN D, SELOT S, PANICKER S. The accuracy analysis of different machine learning classifiers for detecting suicidal ideation and content[J]. Asian Journal of Electrical Sciences, 2023, 12(1): 46-56. [12] CHENG Q, LI T M H, KWOK C L, et al. Assessing suicide risk and emotional distress in Chinese social media: a text mining and machine learning study[J]. Journal of Medical Internet Research, 2017, 19(7): e243. [13] KUMAR E R, VENKATRAM N. Predicting and analyzing suicidal risk behavior using rule-based approach in Twitter data[J]. Soft Computing, 2024, 28(23): 13821-13829. [14] LI Z P, CHENG W C, ZHOU J W, et al. Deep learning model with multi-feature fusion and label association for suicide detection[J]. Multimedia Systems, 2023, 29(4): 2193-2203. [15] TADESSE M M, LIN H F, XU B, et al. Detection of suicide ideation in social media forums using deep learning[J]. Algorithms, 2020, 13(1): 7. [16] CHADHA A, KAUSHIK B. A hybrid deep learning model using grid search and cross-validation for effective classification and prediction of suicidal ideation from social network data[J]. New Generation Computing, 2022, 40(4): 889- 914. [17] HECKLER W F, DE CARVALHO J V, BARBOSA J L V. Machine learning for suicidal ideation identification: a systematic literature review[J]. Computers in Human Behavior, 2022, 128: 107095. [18] ABDULSALAM A, ALHOTHALI A. Suicidal ideation detection on social media: a review of machine learning methods[EB/OL]. [2024-04-08]. https://arxiv.org/abs/2201.10515. [19] HASIB K M, ISLAM M R, SAKIB S, et al. Depression detection from social networks data based on machine learning and deep learning techniques: an interrogative survey[J]. IEEE Transactions on Computational Social Systems, 2023, 10(4): 1568-1586. [20] LIU D X, FENG X L, AHMED F, et al. Detecting and measuring depression on social media using a machine learning approach: systematic review[J]. JMIR Mental Health, 2022, 9(3): e27244. [21] KOUR H, GUPTA M K. An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM[J]. Multimedia Tools and Applications, 2022, 81(17): 23649-23685. [22] KABIR M, AHMED T, HASAN M B, et al. DEPTWEET: a typology for social media texts to detect depression severities[J]. Computers in Human Behavior, 2023, 139: 107503. [23] NOVA K. Machine learning approaches for automated mental disorder classification based on social media textual data[J]. Contemporary Issues in Behavioral and Social Sciences, 2023, 7(1): 70-83. [24] SURYAWANSHI C, TAMBOLI T, TAYADE S, et al. Detection of depression or sentiment analysis[J]. International Journal of Scientific Research in Science and Technology, 2020, 5(8): 162-169. [25] TALAAT F M, EL-GENDY E M, SAAFAN M M, et al. Utilizing social media and machine learning for personality and emotion recognition using PERS[J]. Neural Computing and Applications, 2023, 35(33): 23927-23941. [26] GHOSH T, AL BANNA M H, AL NAHIAN M J, et al. An attention-based hybrid architecture with explainability for depressive social media text detection in Bangla[J]. Expert Systems with Applications, 2023, 213: 119007. [27] JI S X, YU C P, FUNG S F, et al. Supervised learning for suicidal ideation detection in online user content[J]. Complexity, 2018(1): 6157249. [28] NIKHILESWAR K, VISHAL D, SPHOORTHI L, et al. Suicide ideation detection in social media forums[C]//Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication. Piscataway: IEEE, 2021: 1741-1747. [29] VIOULES M J, MOULAHI B, AZÉ J, et al. Detection of suicide-related posts in Twitter data streams[J]. IBM Journal of Research and Development, 2018, 62(1): 7. [30] CAO L, ZHANG H J, FENG L, et al. Latent suicide risk detection on microblog via suicide-oriented word embeddings and layered attention[EB/OL]. [2024-04-08]. https://arxiv.org/abs/1910.12038. [31] CAO L, ZHANG H J, WANG X, et al. Learning users inner thoughts and emotion changes for social media based suicide risk detection[J]. IEEE Transactions on Affective Computing, 2021, 14(2): 1280-1296. [32] BAGHDADI N A, MALKI A, MAGDY BALAHA H, et al. An optimized deep learning approach for suicide detection through Arabic tweets[J]. PeerJ Computer Science, 2022, 8: e1070. [33] ALMARS A M. Attention-based Bi-LSTM model for Arabic depression classification[J]. Computers, Materials & Continua, 2022, 71(2): 3091-3106. [34] NARYNOV S, MUKHTARKHANULY D, KERIMOV I, et al. Comparative analysis of supervised and unsupervised learning algorithms for online user content suicidal ideation detection[J]. Journal of Theoretical and Applied Information Technology, 2019, 97(22): 3304-3317. [35] VALERIANO K, CONDORI-LARICO A, SULLA-TORRES J. Detection of suicidal intent in Spanish language social networks using machine learning[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(4) : 688-695. [36] COPPERSMITH G, DREDZE M, HARMAN C, et al. CLP-sych 2015 shared task: depression and PTSD on twitter[C]//Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality. Stroudsburg: ACL, 2015: 31-39. [37] ZIRIKLY A, RESNIK P, UZUNER O, et al. CLPsych 2019 shared task: predicting the degree of suicide risk in Reddit posts[C]//proceedings of the 6th Workshop on Computational Linguistics and Clinical Psychology. Stroudsburg: ACL, 2019: 24-33. [38] GAUR M, ARIBANDI V, ALAMBO A, et al. Characterization of time-variant and time-invariant assessment of suicidality on Reddit using C-SSRS[J]. PLoS One, 2021, 16(5): e0250448. [39] GAUR M, ALAMBO A, SAIN J P, et al. Knowledge-aware assessment of severity of suicide risk for early intervention[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 514-525. [40] LOSADA D E, CRESTANI F, PARAPAR J. eRisk 2017: CLEF lab on early risk prediction on the Internet: experimental foundations[C]//Proceedings of the 8th International Conference of the CLEF Association, Experimental IR Meets Multilinguality, Multimodality, and Interaction. Cham: Springer, 2017: 346-360. [41] LOSADA D E, CRESTANI F, PARAPAR J. Overview of eRisk: early risk prediction on the Internet[C]//Proceedings of the 9th International Conference of the CLEF Association, Experimental IR Meets Multilinguality, Multimodality, and Interaction. Cham: Springer, 2018: 343-361. [42] PARAPAR J, MARTÍN-RODILLA P, LOSADA D E, et al. Overview of eRisk 2023: early risk prediction on the Internet[C]//Proceedings of the 14th International Conference of the CLEF Association, Experimental IR Meets Multilinguality, Multimodality, and Interaction. Cham: Springer, 2023: 294-315. [43] CHEN Y R, LI Y, WEN M. Chinese psychological QA database and its research problems[C]//Proceedings of the 2022 9th International Conference on Dependable Systems and Their Applications. Piscataway: IEEE, 2022: 786-792. [44] LIU D X, FU Q, WAN C X, et al. Suicidal ideation cause extraction from social texts[J]. IEEE Access, 2020, 8: 169333-169351. [45] ZHANG T L, YANG K L, JI S X, et al. SuicidEmoji: derived emoji dataset and tasks for suicide-related social content[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 1136-1141. [46] RABANI S T, KHAN Q R, KHANDAY A M U D. Detection of suicidal ideation on Twitter using machine learning & ensemble approaches[J]. Baghdad Science Journal, 2020, 17(4): 1328. [47] HUANG Y, LIU X Q, ZHU T S, et al. Suicidal ideation detection via social media analytics[C]//Proceedings of the 5th International Conference on Human Centered Computing. New York: ACM, 2019: 166-174. [48] ZHANG D S, ZHOU L N, TAO J, et al. KETCH: a knowledge- enhanced transformer-based approach to suicidal ideation detection from social media content[J]. Information Systems Research, 2024. DOI:10.1287/isre.2021.0619. [49] KANCHARAPU R, SRINAGESH A, BHANUSRIDHAR M. Prediction of human suicidal tendency based on social media using recurrent neural networks through LSTM[C]//Proceedings of the 2022 International Conference on Computing, Communication and Power Technology. Piscataway: IEEE, 2022: 123-128. [50] ZOGAN H, RAZZAK I, WANG X Z, et al. Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media[J]. World Wide Web, 2022, 25(1): 281-304. [51] ASHOK KUMAR J, TRUEMAN T E, ABINESH A K. Suicidal risk identification in social media[J]. Procedia Computer Science, 2021, 189: 368-373. [52] JI S X, LI X, HUANG Z, et al. Suicidal ideation and mental disorder detection with attentive relation networks[J]. Neural Computing and Applications, 2022, 34(13): 10309-10319. [53] GHOSAL S, JAIN A. Depression and suicide risk detection on social media using fast text embedding and XGBoost classifier[J]. Procedia Computer Science, 2023, 218: 1631-1639. [54] BOONYARAT P, LIEW D J, CHANG Y C. Leveraging enhanced BERT models for detecting suicidal ideation in Thai social media content amidst COVID-19[J]. Information Processing & Management, 2024, 61(4): 103706. [55] METZLER H, BAGINSKI H, NIEDERKROTENTHALER T, et al. Detecting potentially harmful and protective suicide-related content on twitter: machine learning approach[J]. Journal of Medical Internet Research, 2022, 24(8): e34705. [56] YANG Q Y, ZHOU J, WEI Z. Time perspective-enhanced suicidal ideation detection using multi-task learning[J]. International Journal of Network Dynamics and Intelligence, 2024, 3(2): 100011. [57] TAVCHIOSKI I, ROBNIK-ŠIKONJA M, POLLAK S. Detection of depression on social networks using transformers and ensembles[EB/OL]. [2024-04-10]. https://arxiv.org/abs/2305.05325. [58] HERATH S, WIJAYASIRIWARDHANE T K. A social media intelligence approach to predict suicidal ideation from Sinhala facebook posts[C]//Proceedings of the 2024 International Research Conference on Smart Computing and Systems Engineering. Piscataway: IEEE, 2024: 1-6. [59] CHADHA A, GUPTA A, KUMAR Y. Suicidal ideation detection on social media: a machine learning approach[C]//Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences. Piscataway: IEEE, 2022: 685-688. [60] RABANI S T, UD DIN KHANDAY A M, KHAN Q R, et al. Detecting suicidality on social media: machine learning at rescue[J]. Egyptian Informatics Journal, 2023, 24(2): 291-302. [61] SAIFULLAH S, DREŻEWSKI R, DWIYANTO F A, et al. Sentiment analysis using machine learning approach based on feature extraction for anxiety detection[C]//Proceedings of the 23rd International Conference on Computational Science. Cham: Springer, 2023: 365-372. [62] LIU J F, SHI M S. A hybrid feature selection and ensemble approach to identify depressed users in online social media[J]. Frontiers in Psychology, 2022, 12: 802821. [63] LEKKAS D, KLEIN R J, JACOBSON N C. Predicting acute suicidal ideation on Instagram using ensemble machine learning models[J]. Internet Interventions, 2021, 25: 100424. [64] FARRUQUE N, GOEBEL R, SIVAPALAN S, et al. Depression symptoms modelling from social media text: a semi-supervised learning approach[EB/OL]. [2024-04-10]. https://arxiv.org/abs/2209.02765. [65] SHARMEEN R, KHAN S, SANJANA T, et al. Suicidal ideation detection using semi-supervised learning technique: self-training classifier[C]//Proceedings of the 2023 5th International Conference on Sustainable Technologies for Industry 5.0. Piscataway: IEEE, 2023: 1-6. [66] BENIWAL R, SARASWAT P. A hybrid BERT-CNN approach for depression detection on social media using multimodal data[J]. The Computer Journal, 2024, 67(7): 2453-2472. [67] GORAI J, SHAW D K. A BERT-encoded ensembled CNN model for suicide risk identification in social media posts[J]. Neural Computing and Applications, 2024, 36(18): 10955-10970. [68] KIM Y, LI P, HUANG H. Convolutional neural networks for sentence classification[EB/OL]. [2024-04-12]. https://arxiv.org/abs/1408.5882. [69] YAO H, RASHIDIAN S, DONG X Y, et al. Detection of suicidality among opioid users on Reddit: machine learning-based approach[J]. Journal of Medical Internet Research, 2020, 22(11): e15293. [70] ALABDULKREEM E. Prediction of depressed Arab women using their tweets[J]. Journal of Decision Systems, 2021, 30(2/3): 102-117. [71] APOORVA A, GOYAL V, KUMAR A, et al. Depression detection on twitter using RNN and LSTM models[C]//Proceedings of the 2nd International Conference on Advanced Network Technologies and Intelligent Computing. Cham: Springer, 2023: 305-319. [72] DEEPA J, SHRIRAAMAN S, SHRUTI V V, et al. Detecting and determining degree of suicidal ideation on Tweets using LSTM and machine learning models[J]. Journal of Survey in Fisheries Sciences, 2023, 10(2S): 3217-3224. [73] KANCHARAPU R, A AYYAGARI S N. A comparative study on word embedding techniques for suicide prediction on COVID-19 Tweets using deep learning models[J]. International Journal of Information Technology, 2023, 15(6): 3293-3306. [74] MUMENIN N, BASAR M R, HOSSAIN A B M K, et al. Suicidal ideation detection from social media texts using an interpretable hybrid model[C]//Proceedings of the 2023 6th International Conference on Electrical Information and Communication Technology. Piscataway: IEEE, 2023: 1-6. [75] OYEWALE C T, IBITOYE A O J, AKINYEMI J D, et al. Suicide ideation prediction through deep learning: an integration of CNN and bidirectional LSTM with word embeddings[C]//Proceedings of the 2024 Computing Conference, Intelligent Computing. Cham: Springer, 2024: 271-283. [76] PRIYAMVADA B, SINGHAL S, NAYYAR A, et al. Stacked CNN-LSTM approach for prediction of suicidal ideation on social media[J]. Multimedia Tools and Applications, 2023, 82(18): 27883-27904. [77] RENJITH S, ABRAHAM A, JYOTHI S B, et al. An ensemble deep learning technique for detecting suicidal ideation from posts in social media platforms[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10): 9564-9575. [78] 谌志群, 鞠婷. 基于BERT和双向LSTM的微博评论倾向性分析研究[J]. 情报理论与实践, 2020, 43(8): 173-177. CHEN Z Q, JU T. Research on tendency analysis of micro-blog comments based on BERT and BLSTM[J]. Information Studies (Theory & Application), 2020, 43(8): 173-177. [79] LIN E, SUN J, CHEN H, et al. Data quality matters: suicide intention detection on social media posts using RoBERTa-CNN[EB/OL]. [2024-04-12]. https://arxiv.org/abs/2402.02262. [80] WANG Z X, JIN M Z, LU Y. High-precision detection of suicidal ideation on social media using Bi-LSTM and BERT models[C]//Proceedings of the 7th International Conference on Cognitive Computing. Cham: Springer, 2024: 3-18. [81] ARAGON M, LOPEZ MONROY A P, GONZALEZ L, et al. DisorBERT: a double domain adaptation model for detecting signs of mental disorders in social media[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 15305- 15318. [82] CHEN L S, LUO Z J, NALLURI V. Constructing depression prediction model using ChatGPT and machine learning algorithms[C]//Proceedings of the 2023 12th International Conference on Awareness Science and Technology. Piscataway: IEEE, 2023: 233-236. [83] GHANADIAN H, NEJADGHOLI I, AL OSMAN H. Socially aware synthetic data generation for suicidal ideation detection using large language models[J]. IEEE Access, 2024, 12: 14350-14363. [84] GAO J H, CHENG Q J, YU P L H. Detecting comments showing risk for suicide in YouTube[C]//Proceedings of the Future Technologies Conference 2018. Cham: Springer, 2018: 385-400. [85] LI Z P, ZHOU J W, AN Z Y, et al. Deep hierarchical ensemble model for suicide detection on imbalanced social media data[J]. Entropy, 2022, 24(4): 442. [86] ALI BEN HASSINE M, ABDELLATIF S, BEN YAHIA S. A novel imbalanced data classification approach for suicidal ideation detection on social media[J]. Computing, 2022, 104(4): 741-765. [87] SAWHNEY R, JOSHI H, GANDHI S, et al. A time-aware transformer based model for suicide ideation detection on social media[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7685-7697. [88] SAWHNEY R, JOSHI H, FLEK L, et al. PHASE: learning emotional phase-aware representations for suicide ideation detection on social media[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg: ACL, 2021: 2415-2428. [89] YOHAPRIYAA M, UMA M. Multi-variant classification of depression severity using social media networks based on time stamp[C]//Proceedings of the 5th International Conference on Intelligent Data Communication Technologies and Internet of Things. Singapore: Springer, 2022: 553-564. [90] KODATI D, TENE R. Identifying suicidal emotions on social media through transformer-based deep learning[J]. Applied Intelligence, 2022, 53(10): 11885-11917. [91] YANG K L, JI S X, ZHANG T L, et al. Towards interpretable mental health analysis with large language models[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 6065-6077. [92] LAN X C, CHENG Y M, SHENG L, et al. Depression detection on social media with large language models[EB/OL]. [2024-04-12]. https://arxiv.org/abs/2403.10750. [93] 苗红闪. 基于微博抑郁症识别方法研究[D]. 北京: 北京工业大学, 2020. MIAO H S. Research on depression identification method based on weibo[D]. Beijing: Beijing University of Technology, 2020. [94] MENG X Y, WANG C L, YANG J R, et al. Predicting users’ latent suicidal risk in social media: an ensemble model based on social network relationships[J]. Computers, Materials & Continua, 2024, 79(3): 4259-4281. [95] YAZDAVAR A H, MAHDAVINEJAD M S, BAJAJ G, et al. Multimodal mental health analysis in social media[J]. PLoS One, 2020, 15(4): e0226248. [96] GUI T, ZHU L, ZHANG Q, et al. Cooperative multimodal approach to depression detection in twitter[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2019: 110-117. [97] RAMÍREZ-CIFUENTES D, FREIRE A, BAEZA-YATES R, et al. Detection of suicidal ideation on social media: multi- modal, relational, and behavioral analysis[J]. Journal of Medical Internet Research, 2020, 22(7): e17758. [98] SHEN T C, JIA J, SHEN G Y, et al. Cross-domain depression detection via harvesting social media[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 1611-1617. [99] MBAREK A, JAMOUSSI S, BEN HAMADOU A. An across online social networks profile building approach: application to suicidal ideation detection[J]. Future Generation Computer Systems, 2022, 133: 171-183. |
[1] | 孟祥福, 师光启, 张霄雁, 冷强奎, 方金凤. 基于深度学习的轨迹相似性度量方法研究综述[J]. 计算机科学与探索, 2025, 19(3): 623-644. |
[2] | 刘谭, 刘娜, 刘贵平, 刘坤杰, 刘敏, 庄旭菲, 张中豪. 深度学习方法在风电功率预测中的应用与研究方向概述[J]. 计算机科学与探索, 2025, 19(3): 602-622. |
[3] | 陈冲, 朱啸宇, 王芳, 许雅倩, 张伟. 物理引导的深度学习研究综述:进展、挑战和展望[J]. 计算机科学与探索, 2025, 19(2): 277-294. |
[4] | 程佳琳, 袁得嵛, 孙泽宇, 陈梓彦. 基于SDNE嵌入表达的深度学习跨网络身份关联方法[J]. 计算机科学与探索, 2025, 19(2): 417-428. |
[5] | 马倩, 董武, 曾庆涛, 张艳, 陆利坤, 周子镱. 图像重定向及客观质量评价方法综述[J]. 计算机科学与探索, 2025, 19(2): 316-333. |
[6] | 郭佳霖, 智敏, 殷雁君, 葛湘巍. 图像处理中CNN与视觉Transformer混合模型研究综述[J]. 计算机科学与探索, 2025, 19(1): 30-44. |
[7] | 杨晨, 徐昊, 朱佳伟, 吴秦, 柴志雷. LightGCNet:基于轻量化卷积网络的深度色域压缩算法[J]. 计算机科学与探索, 2025, 19(1): 196-210. |
[8] | 杨梅君, 姚若侠, 谢娟英. CARFB:即插即用的目标检测模块[J]. 计算机科学与探索, 2025, 19(1): 223-236. |
[9] | 王永威, 魏德健, 曹慧, 姜良. 深度学习在心力衰竭检测中的应用综述[J]. 计算机科学与探索, 2025, 19(1): 65-78. |
[10] | 孟祥福, 石皓源. 基于Transformer模型的时序数据预测方法综述[J]. 计算机科学与探索, 2025, 19(1): 45-64. |
[11] | 连哲, 殷雁君, 智敏, 徐巧枝. 自然场景文本检测中可微分二值化技术综述[J]. 计算机科学与探索, 2024, 18(9): 2239-2260. |
[12] | 方博儒, 仇大伟, 白洋, 刘静. 表面肌电信号在肌肉疲劳研究中的应用综述[J]. 计算机科学与探索, 2024, 18(9): 2261-2275. |
[13] | 徐彦威, 李军, 董元方, 张小利. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238. |
[14] | 李子奇, 苏宇轩, 孙俊, 张永宏, 夏庆锋, 尹贺峰. 基于深度学习的多聚焦图像融合方法前沿进展[J]. 计算机科学与探索, 2024, 18(9): 2276-2292. |
[15] | 叶庆文, 张秋菊. 采用通道像素注意力的多标签图像识别[J]. 计算机科学与探索, 2024, 18(8): 2109-2117. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||