[1] CHEN H Y, LONG H Y, CHEN T, et al. M3FuNet: an unsupervised multivariate feature fusion network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5513015.
[2] ZHANG X, JIANG X W, JIANG J J, et al. Spectral-spatial and superpixelwise PCA for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5502210.
[3] ZHAO H T, SUN S Y, JING Z L, et al. Local structure based supervised feature extraction[J]. Pattern Recognition, 2006, 39(8): 1546-1550.
[4] LU J L, LAI Z H, WANG H L, et al. Generalized embedding regression: a framework for supervised feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(1): 185-199.
[5] CHAVOSHINEJAD J, SEYEDI S A, AKHLAGHIAN TAB F, et al. Self-supervised semi-supervised nonnegative matrix factorization for data clustering[J]. Pattern Recognition, 2023, 137: 109282.
[6] 郭乐铭, 薛万利, 袁甜甜. 多尺度视觉特征提取及跨模态对齐的连续手语识别[J]. 计算机科学与探索, 2024, 18(10): 2762-2769.
GUO L M, XUE W L, YUAN T T. Multi-scale visual feature extraction and cross-modality alignment for continuous sign language recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2762-2769.
[7] PANDIT A A, PIMPALE B, DUBEY S. A comprehensive review on unsupervised feature selection algorithms[C]//Proceedings of the International Conference on Intelligent Computing and Smart Communication 2019. Singapore: Springer, 2020: 255-266.
[8] MA?KIEWICZ A, RATAJCZAK W. Principal components analysis (PCA)[J]. Computers & Geosciences, 1993, 19(3): 303-342.
[9] HE X F, NIYOGI P, HE X F, et al. Locality preserving projections[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems, 2003: 153-160.
[10] COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287-314.
[11] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
[12] HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Proceedings of the 10th IEEE International Conference on Computer Vision, Volume 1. Piscataway: IEEE, 2005: 1208-1213.
[13] PANG Y W, ZHANG L, LIU Z K, et al. Neighborhood preserving projections (NPP): a novel linear dimension reduction method[C]//Advances in Intelligent Computing: International Conference on Intelligent Computing. Berlin, Heidelberg: Springer, 2005: 117-125.
[14] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[15] CAI D, HE X F, HAN J W, et al. Orthogonal Laplacianfaces for face recognition[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614.
[16] WANG R, NIE F P, HONG R C, et al. Fast and orthogonal locality preserving projections for dimensionality reduction[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5019-5030.
[17] PANG Y W, JI Z, JING P G, et al. Ranking graph embedding for learning to rerank[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1292-1303.
[18] LU Y W, LAI Z H, XU Y, et al. Low-rank preserving projections[J]. IEEE Transactions on Cybernetics, 2016, 46(8): 1900-1913.
[19] WEN J, HAN N, FANG X Z, et al. Low-rank preserving projection via graph regularized reconstruction[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1279-1291.
[20] LU J L, WANG H L, ZHOU J, et al. Low-rank adaptive graph embedding for unsupervised feature extraction[J]. Pattern Recognition, 2021, 113: 107758.
[21] 杨明瑞, 周世兵, 王茜, 等. 稀疏矩阵和改进归一化切割的快速多视图聚类[J]. 计算机科学与探索, 2024, 18(11): 3027-3040.
YANG M R, ZHOU S B, WANG X, et al. Fast multi-view clustering with sparse matrix and improved normalized cut[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 3027-3040.
[22] ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation: algorithms and applications[J]. IEEE Access, 2015, 3: 490-530.
[23] 辛利柯, 杨琬琪, 杨明. 基于判别稀疏性表示的不完整多视图分类[J]. 计算机科学与探索, 2021, 15(10): 1938-1948.
XIN L K, YANG W Q, YANG M. Incomplete multi-view classification via discriminative and sparse representation[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1938-1948.
[24] QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1): 331-341.
[25] XIE L F, YIN M, YIN X Y, et al. Low-rank sparse preserving projections for dimensionality reduction[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5261-5274.
[26] ZOU H, HASTIE T, TIBSHIRANI R. Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286.
[27] ZHUANG L S, GAO H Y, LIN Z C, et al. Non-negative low rank and sparse graph for semi-supervised learning[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2328-2335.
[28] NIE F P, ZHU W, LI X L, et al. Unsupervised large graph embedding[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 2422-2428.
[29] HUANG S D, WU H J, REN Y Z, et al. Multi-view subspace clustering on topological manifold[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems, 2022: 25883-25894.
[30] YANG S M, ZHANG L, HE X F, et al. Learning manifold structures with subspace segmentations[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1981-1992.
[31] WANG Q, CHEN M L, LI X L, et al. Quantifying and detecting collective motion by manifold learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4292-4298.
[32] YU K Y, ZHU Y K, YIN X S, et al. Structure-aware preserving projections with applications to medical image clustering Image 1[J]. Applied Soft Computing, 2024, 158: 111576.
[33] YIN M, GAO J B, LIN Z C. Laplacian regularized low-rank representation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(3): 504-517.
[34] ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[35] LIU G C, LIN Z C, YU Y, et al. Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th International Conference on Machine Learning, 2010: 663-670.
[36] YAO J, CAO X Y, ZHAO Q, et al. Robust subspace clustering via penalized mixture of Gaussians[J]. Neurocomputing, 2018, 278: 4-11.
[37] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
[38] NIE F P, WANG X Q, JORDAN M I, et al. The constrained Laplacian rank algorithm for graph-based clustering[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2016: 1969-1976.
[39] CAI J F, CANDèS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[40] LIU G C, YAN S C. Latent low-rank representation for subspace segmentation and feature extraction[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1615-1622.
[41] WEN J, FANG X Z, XU Y, et al. Low-rank representation with adaptive graph regularization[J]. Neural Networks, 2018, 108: 83-96.
[42] BELKIN M, NIYOGI P, BELKIN M, et al. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems: Natural and Synthetic, 2001: 585-591.
[43] WAN M H, CAI M X, YANG Z J, et al. Robust latent nonnegative matrix factorization with automatic sparse reconstruction for unsupervised feature extraction[J]. Information Sciences, 2023, 648: 119517.
[44] WANG J Y, WANG L, NIE F P, et al. Joint feature selection and extraction with sparse unsupervised projection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(6): 3071-3081. |