计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (3): 602-622.DOI: 10.3778/j.issn.1673-9418.2408090
刘谭,刘娜,刘贵平,刘坤杰,刘敏,庄旭菲,张中豪
出版日期:
2025-03-01
发布日期:
2025-02-28
LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao
Online:
2025-03-01
Published:
2025-02-28
摘要: 随着全球对可再生能源需求的增加,风电作为清洁可再生能源的重要组成部分,其功率的准确预测对于电力系统的稳定运行和能源的高效利用至关重要。近年来,深度学习方法在风功率预测领域展现出显著的优势,通过构建复杂的非线性模型,深度学习模型能够有效地捕捉风功率数据的内在规律和变化趋势。从风电功率预测的分类、实现一般思路和评估方法概述了风电功率预测的研究对象和目标。综述了深度学习技术在风功率预测中的应用,在对深度学习技术做出细致的划分的基础上,重点分析了基于空间结构的深度学习模型和基于时间的深度学习模型及其相关变体模型所克服的问题和性能表现,并对所提模型方法存在的局限性及对应解决方法进行总结。从数据处理、参数优化算法和风电功率预测模型优化方法三个方面概述了基于深度学习风电功率预测的研究进展。对未来风电功率预测的发展方向进行了展望。
刘谭, 刘娜, 刘贵平, 刘坤杰, 刘敏, 庄旭菲, 张中豪. 深度学习方法在风电功率预测中的应用与研究方向概述[J]. 计算机科学与探索, 2025, 19(3): 602-622.
LIU Tan, LIU Na, LIU Guiping, LIU Kunjie, LIU Min, ZHUANG Xufei, ZHANG Zhonghao. Overview of Applications and Research Directions of Deep Learning Methods for Wind Power Prediction[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 602-622.
[1] 全球风能理事会GWEC. 2023全球风能报告[EB/OL]. (2023-03-29) [2024-09-26]. https://news.bjx.com.cn/h-tml/20230329/1297728.shtml. Global Wind Energy Council GWEC. 2023 global wind energy report[EB/OL]. (2023-03-29) [2024-09-26]. https://news.bjx. com.cn/html/20230329/1297728.shtml. [2] 胡锐, 乔加飞, 李永华, 等. 基于WOA-VMD-SSA-LSTM的中长期风电预测[J]. 太阳能学报, 2024, 45(9): 549-556. HU R, QIAO J F, LI Y H, et al. Medium and long term wind power forecast based on WOA-VMD-SSA-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 549-556. [3] HANIFI S, LIU X L, LIN Z, et al. A critical review of wind power forecasting methods: past, present and future[J]. Energies, 2020, 13(15): 3764. [4] SUN R, ZHANG T, HE Q, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47(4): 1129-1143. [5] 姜兆宇, 贾庆山, 管晓宏. 多时空尺度的风力发电预测方法综述[J]. 自动化学报, 2019, 45(1): 51-71. JIANG Z Y, JIA Q S, GUAN X H. A review of multi-temporal-and-spatial-scale wind power forecasting method[J]. Acta Automatica Sinica, 2019, 45(1): 51-71. [6] MALDONADO-CORREA J, SOLANO J C, ROJAS-MONCAYO M. Wind power forecasting: a systematic literature review[J]. Wind Engineering, 2021, 45(2): 413-426. [7] WANG Y, ZOU R M, LIU F, et al. A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304: 117766. [8] 戴千斌, 黄南天. 短期风电功率预测误差修正研究综述[J]. 东北电力大学学报, 2023, 43(2): 1-7. DAI Q B, HUANG N T. Review of research on error correction of short-term wind power prediction[J]. Journal of Northeast Electric Power University, 2023, 43(2): 1-7. [9] WANG H K, SONG K, CHENG Y. A hybrid forecasting model based on CNN and informer for short-term wind power[J]. Frontiers in Energy Research, 2022, 9: 788320. [10] HUANG S, YAN C, QU Y P. Deep learning model-transformer based wind power forecasting approach[J]. Frontiers in Energy Research, 2023, 10: 1055683. [11] LI R, ZHANG J C, ZHAO X W. Deep learning-based wind farm power prediction using Transformer network[C]//Proceedings of the 2022 European Control Conference. Piscataway: IEEE, 2022: 1018-1023. [12] HU S, XIANG Y, HUO D, et al. An improved deep belief network based hybrid forecasting method for wind power[J]. Energy, 2021, 224: 120185. [13] WANG L, TAO R, HU H L, et al. Effective wind power prediction using novel deep learning network: stacked independently recurrent autoencoder[J]. Renewable Energy, 2021, 164: 642-655. [14] SHI C Q, ZHANG X L. Recurrent neural network wind power prediction based on variational modal decomposition improvement[J]. AIP Advances, 2023, 13(2): 025027. [15] CHENG M M, QIAN W J, HE X. The research on wind power prediction based on wind speed correction[C]//Proceedings of the 2023 42nd Chinese Control Conference. Piscataway: IEEE, 2023: 6309-6314. [16] LIU H Y, HAN H, SUN Y, et al. Short-term wind power interval prediction method using VMD-RFG and Att-GRU[J]. Energy, 2022, 251: 123807. [17] FUKUSHIMA K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. [18] ZHU A W, LI X H, MO Z Y, et al. Wind power prediction based on a convolutional neural network[C]//Proceedings of the 2017 International Conference on Circuits, Devices and Systems. Piscataway: IEEE, 2017: 131-135. [19] ALI KARAMAN Ö. Prediction of wind power with machine learning models[J]. Applied Sciences, 2023, 13(20): 11455. [20] 张淑清, 杜灵韵, 王册浩, 等. 基于格拉姆角场与改进CNN-ResNet的风电功率预测方法[J]. 电网技术, 2023, 47(4): 1540-1548. ZHANG S Q, DU L Y, WANG C H, et al. Wind power forecasting method based on GAF and improved CNN-ResNet[J]. Power System Technology, 2023, 47(4): 1540-1548. [21] LI N, DONG J, LIU L Y, et al. A novel EMD and causal convolutional network integrated with Transformer for ultra short-term wind power forecasting[J]. International Journal of Electrical Power & Energy Systems, 2023, 154: 109470. [22] ZHAO Z N, YUN S N, JIA L Y, et al. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105982. [23] HOU Z H, BAI Y L, DING L, et al. Deep learning wind power prediction model based on attention mechanism-based convolutional neural network and gated recurrent unit neural network[J]. Journal of Circuits, Systems and Computers, 2024, 33(16): 2450284. [24] GARG S, KRISHNAMURTHI R. A CNN encoder decoder LSTM model for sustainable wind power predictive analytics[J]. Sustainable Computing: Informatics and Systems, 2023, 38: 100869. [25] CHEN X J, ZHANG X Q, DONG M, et al. Deep learning-based prediction of wind power for multi-turbines in a wind farm[J]. Frontiers in Energy Research, 2021, 9: 723775. [26] LIU J, SHI Q, HAN R L, et al. A hybrid GA-PSO-CNN model for ultra-short-term wind power forecasting[J]. Energies, 2021, 14(20): 6500. [27] ZHU Z W, JIANG J, ZHU X L, et al. Wind power prediction method based on CNN-LSTM-Attention and Bayesian optimization[C]//Proceedings of the 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2024: 1683-1690. [28] YANG T, YANG Z N, LI F, et al. A short-term wind power forecasting method based on multivariate signal decomposition and variable selection[J]. Applied Energy, 2024, 360: 122759. [29] WU Q Y, GUAN F, LV C, et al. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM[J]. IET Renewable Power Generation, 2021, 15(5): 1019-1029. [30] ABOU HOURAN M, SALMAN BUKHARI S M, ZAFAR M H, et al. COA-CNN-LSTM: coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications[J]. Applied Energy, 2023, 349: 121638. [31] HUANG L, LI L X, WEI X Y, et al. Short-term prediction of wind power based on BiLSTM-CNN-WGAN-GP[J]. Soft Computing, 2022, 26(20): 10607-10621. [32] REN J, YU Z P, GAO G L, et al. A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism[J]. Energy Reports, 2022, 8: 437-443. [33] LI Z, XU R S, LUO X R, et al. Short-term wind power prediction based on modal reconstruction and CNN-BiLSTM[J]. Energy Reports, 2023, 9: 6449-6460. [34] ZHANG J H, ZHAO Z Y, YAN J, et al. Ultra-short-term wind power forecasting based on CGAN-CNN-LSTM model supported by lidar[J]. Sensors, 2023, 23(9): 4369. [35] ZHANG C, PENG T, NAZIR M S. A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables[J]. Electric Power Systems Research, 2022, 213: 108796. [36] WANG D Y, CUI X W, NIU D X. Wind power forecasting based on LSTM improved by EMD-PCA-RF[J]. Sustainability, 2022, 14(12): 7307. [37] 廖雪超, 陈才圣, 伍杰平. 基于CNN-LSTM及深度学习的风电场时空组合预测模型[J]. 信息与控制, 2022, 51(4): 498-512. LIAO X C, CHEN C S, WU J P. Combined spatiotemporal wind farm prediction model based on CNN-LSTM and deep learning[J]. Information and Control, 2022, 51(4): 498-512. [38] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [39] HUANG Q Y, WANG Y P, YANG X, et al. Research on wind power prediction based on a gated transformer[J]. Applied Sciences, 2023, 13(14): 8350. [40] JIANG M, JIANG X, ZHOU Q. Temporal fusion transformer using variational mode decomposition for wind power forecasting[EB/OL]. [2024-06-16]. https://arxiv.org/abs/2302. 01222. [41] CHEN J T, FU X Y, ZHANG L L, et al. A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms[J]. Energy, 2024, 308: 132899. [42] WEI H, WANG W S, KAO X X. A novel approach to ultra-short-term wind power prediction based on feature engineering and informer[J]. Energy Reports, 2023, 9: 1236-1250. [43] LÓPEZ SANTOS M, DÍAZ GARCÍA S, GARCÍA-SANTIAGO X, et al. Deep learning and transfer learning techniques applied to short-term load forecasting of data-poor buildings in local energy communities[J]. Energy and Buildings, 2023, 292: 113164. [44] BOMMIDI B S, TEEPARTHI K, KOSANA V. Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function[J]. Energy, 2023, 265: 126383. [45] WANG L, HE Y G, LIU X Y, et al. M2TNet: multi-modal multi-task Transformer network for ultra-short-term wind power multi-step forecasting[J]. Energy Reports, 2022, 8: 7628-7642. [46] NASCIMENTO E G S, DE MELO T A C, MOREIRA D M. A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy[J]. Energy, 2023, 278: 127678. [47] WU K, PENG H W, CHEN M H, et al. Rethinking and improving relative position encoding for vision transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10013-10021. [48] WANG G X, LU Y J, CUI L, et al. A simple yet effective learnable positional encoding method for improving document transformer model[C]//Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. Stroudsburg: ACL, 2022: 453-463. [49] ZHA W T, JIN Y, SUN Y L, et al. A wind speed vector-wind power curve modeling method based on data denoising algorithm and the improved Transformer[J]. Electric Power Systems Research, 2023, 214: 108838. [50] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. [51] BAUMANN J, KRAMER O. Wind power prediction with ETSformer[J]. Power (MW), 2023, 8: 10. [52] SARKAR M R, ANAVATTI S G, DAM T, et al. Enhancing wind power forecast precision via multi-head attention transformer: an investigation on single-step and multi-step forecasting[C]//Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-8. [53] ZHU N Y, DAI Z M, WANG Y, et al. A contrastive learning-based framework for wind power forecast[J]. Expert Systems with Applications, 2023, 230: 120619. [54] MADHIARASAN M, ROY P P. Hybrid transformer network for different horizons-based enriched wind speed forecasting[EB/OL]. [2024-06-16]. https://arxiv.org/abs/2204.09019. [55] LAI Z F, LING Q. A dual spatio-temporal network for short-term wind power forecasting[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103486. [56] WANG H K, LI D Y, CHEN F, et al. GCNInformer: a combined deep learning model based on GCN and Informer for wind power forecasting[J]. Energy Science & Engineering, 2023, 11(10): 3836-3854. [57] WANG S H, CHANG L H, LIU H, et al. Short-term prediction of wind power based on temporal convolutional network and the informer model[J]. IET Generation, Transmission & Distribution, 2024, 18(5): 941-951. [58] XIANG L, FU X, YAO Q T, et al. A novel model for ultra-short term wind power prediction based on Vision Transformer[J]. Energy, 2024, 294: 130854. [59] MO S T, WANG H X, LI B X, et al. Powerformer: a temporal-based transformer model for wind power forecasting[J]. Energy Reports, 2024, 11: 736-744. [60] WANG S X, SHI J R, YANG W, et al. High and low frequency wind power prediction based on Transformer and BiGRU-Attention[J]. Energy, 2024, 288: 129753. [61] TAO Y B, CHEN H K, QIU C. Wind power prediction and pattern feature based on deep learning method[C]//Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference. Piscataway: IEEE, 2014: 1-4. [62] KHAN A, ZAMEER A, JAMAL T, et al. Deep belief networks based feature generation and regression for predicting wind power[EB/OL]. [2024-06-16]. https://arxiv.org/abs/1807.11682. [63] TASNIM S, RAHMAN A, OO A M T, et al. Autoencoder for wind power prediction[J]. Renewables: Wind, Water, and Solar, 2017, 4(1): 6. [64] EL BOURAKADI D, YAHYAOUY A, BOUMHIDI J. Improved extreme learning machine with AutoEncoder and particle swarm optimization for short-term wind power prediction[J]. Neural Computing and Applications, 2022, 34(6): 4643-4659. [65] WAN J Z, SHI M J, LIANG Y B, et al. Prediction method of large-diameter ball valve internal leakage rate based on CNN-GA-DBN[J]. IEEE Sensors Journal, 2023, 23(17): 20321-20329. [66] ZHANG H, LIU Y Q, YAN J, et al. Improved deep mixture density network for regional wind power probabilistic forecasting[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2549-2560. [67] YUAN W R, TANG Z H, BU B, et al. A novel hybrid short-term wind power prediction framework based on singular spectrum analysis and deep belief network utilized improved adaptive genetic algorithm[C]//Proceedings of the 2021 3rd International Conference on Industrial Artificial Intelligence. Piscataway: IEEE, 2021: 1-6. [68] SHEN Y, WANG M, ZOU Q, et al. A deep-learning-based hybrid model of ultra-short-term wind power forecasting with improved quartile outlier detection and nonlinear hidden feature extraction[EB/OL]. (2023-04-19) [2024-09-27]. https:// papers.ssrn.com/sol3/papers.c-fm?abstract_id=4423044. [69] SUN Z A, CHEN Z. Power generation prediction method of offshore wind turbines based on cascaded deep learning[J]. International Transactions on Electrical Energy Systems, 2022(1): 4404867. [70] WANG X L, LIU R C. Ultra-short-term wind power prediction based on LVDBN[C]//Proceedings of the 2022 4th International Conference on Power and Energy Technology. Piscataway: IEEE, 2022: 644-648. [71] RASHID MAHIN M S, KABIR S, ISLAM M A, et al. Advanced forecasting of wind energy generation through integration of AE-CLSTM[C]//Proceedings of the 2024 International Conference on Green Energy, Computing and Sustainable Technology. Piscataway: IEEE, 2024: 305-310. [72] TONG X, WANG J Y, ZHANG C L, et al. LS-LSTM-AE: power load forecasting via long-short series features and LSTM-autoencoder[J]. Energy Reports, 2022, 8: 596-603. [73] HARROU F, DAIRI A, DORBANE A, et al. Enhancing wind power prediction with self-attentive variational autoencoders: a comparative study[J]. Results in Engineering, 2024, 23: 102504. [74] PENG X S, YANG Z M, LI Y H, et al. Short-term wind power prediction based on stacked denoised auto-encoder deep learning and multi-level transfer learning[J]. Wind Energy, 2023, 26(10): 1066-1081. [75] XU P H, ZHANG M Y, CHEN Z H, et al. A deep learning framework for day ahead wind power short-term prediction[J]. Applied Sciences, 2023, 13(6): 4042. [76] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition[EB/OL]. [2024-06-16]. https:// arxiv.org/abs/1402.1128. [77] ZHOU B W, MA X J, LUO Y H, et al. Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J]. IEEE Access, 2019, 7: 165279-165292. [78] ZHANG P, LI C P, PENG C H, et al. Ultra-short-term prediction of wind power based on error following forget gate-based long short-term memory[J]. Energies, 2020, 13(20): 5400. [79] HAN L, JING H T, ZHANG R C, et al. Wind power forecast based on improved long short term memory network[J]. Energy, 2019, 189: 116300. [80] ZHANG Y M, WANG H. Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting[J]. Energy, 2023, 278: 127865. [81] YANG G Z, CAO Y D, JIN H K, et al. Multi-stage attention mechanism based deep learning for wind power forecasting[C]//Proceedings of the 2024 43rd Chinese Control Conference. Piscataway: IEEE, 2024: 6287-6294. [82] REN D F, MA J Q, LIU H, et al. The IVMD-CNN-GRU-attention model for wind power prediction with sample entropy fusion[J]. IEEE Access, 2024, 12: 169988-170000. [83] HUO X M, SU H, YANG P, et al. Research of short-term wind power generation forecasting based on mRMR-PSO-LSTM algorithm[J]. Electronics, 2024, 13(13): 2469. [84] LIU T H, QI S L, QIAO X Z, et al. A hybrid short-term wind power point-interval prediction model based on combination of improved preprocessing methods and entropy weighted GRU quantile regression network[J]. Energy, 2024, 288: 129904. [85] MORA E, CIFUENTES J, MARULANDA G. Short-term forecasting of wind energy: a comparison of deep learning frameworks[J]. Energies, 2021, 14(23): 7943. [86] CHEN W J, QI W W, LI Y, et al. Ultra-short-term wind power prediction based on bidirectional gated recurrent unit and transfer learning[J]. Frontiers in Energy Research, 2021, 9: 808116. [87] LI D, HU Y, YANG B H, et al. A novel transfer learning strategy for wind power prediction based on TimesNet-GRU architecture[J]. Journal of Renewable and Sustainable Energy, 2024, 16(3): 033303. [88] YING H M, DENG C H, XU Z H, et al. Short-term prediction of wind power based on phase space reconstruction and BiLSTM[J]. Energy Reports, 2023, 9: 474-482. [89] ZHANG D D, CHEN B A, ZHU H Y, et al. Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model[J]. Energy, 2023, 285: 128762. [90] XIANG L, LIU J N, YANG X, et al. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM[J]. Energy Conversion and Management, 2022, 252: 115036. [91] HAN L, ZHANG R C, WANG X S, et al. Multi-step wind power forecast based on VMD-LSTM[J]. IET Renewable Power Generation, 2019, 13(10): 1690-1700. [92] HU C J, ZHAO Y, JIANG H, et al. Prediction of ultra-short-term wind power based on CEEMDAN-LSTM-TCN[J]. Energy Reports, 2022, 8: 483-492. [93] YUE Y, DA L. Short-term wind power forecasting based on attention mechanism of CNN-LSTM[J]. Modern Electric Power, 2022, 39(2): 212-218. [94] XIAO Y L, ZOU C Z, CHI H T, et al. Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis[J]. Energy, 2023, 267: 126503. [95] MENG A B, CHEN S, OU Z H, et al. A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization[J]. Energy, 2022, 238: 121795. [96] LIU L, LIU J C, YE Y, et al. Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty[J]. Renewable Energy, 2023, 205: 598-607. [97] CAO R B, LIU S M. Research on wind power prediction method based on CEEMDAN-SSA-GRU[C]//Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology. Piscataway: IEEE, 2021: 597-601. [98] ABEDINIA O, GHASEMI-MARZBALI A, SHAFIEI M, et al. Wind power forecasting enhancement utilizing adaptive quantile function and CNN-LSTM: a probabilistic approach[J]. IEEE Transactions on Industry Applications, 2024, 60(3): 4446-4457. [99] SUN Z X, ZHAO M Y. Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis[J]. IEEE Access, 2020, 8: 134422-134434. [100] DENG Z G, ZHANG X, LI Z M, et al. Probabilistic prediction of wind power based on improved Bayesian neural network[J]. Frontiers in Energy Research, 2024, 11: 1309778. [101] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[EB/OL]. [2024-07-25]. https://arxiv.org/abs/1409.1259. [102] NOSOUHIAN S, NOSOUHIAN F, KHOSHOUEI A K. A review of recurrent neural network architecture for sequence learning: comparison between LSTM and GRU[EB/OL]. [2024-09-27]. https://www.preprints.org/manuscript/202107. 0252. [103] NIU Z W, YU Z Y, TANG W H, et al. Wind power forecasting using attention-based gated recurrent unit network[J]. Energy, 2020, 196: 117081. [104] CHI D W, YANG C Z. Wind power prediction based on WT-BiGRU-attention-TCN model[J]. Frontiers in Energy Research, 2023, 11: 1156007. [105] 国能日新. 功率预测基本盘牢固,电力交易、储能、虚拟电厂齐头并进[EB/OL]. (2023-05-29) [2024-09-27]. https://max.book118.com/html/2023/0601/5212043042010220.shtm. State Power Rixin Tech. Co., Ltd. Power forecasting fundamentals firm up as power trading, storage, virtual power plants go hand in hand[EB/OL]. (2023-05-29) [2024-09-27]. https://max.book118.com/html/2023/0601/52120430 42010220.shtm. [106] 海电气风电集团. WindSeer风电功率预测系统[EB/OL]. (2021-11-19) [2024-09-27]. https://wind.in-en.com/html/wind-2411558.shtml. Shanghai Electric Wind Power Group Co., Ltd. WindSeer wind power prediction system[EB/OL]. (2021-11-19) [2024-09-27]. https://wind.in-en.com/html/wind-2411558.shtml. [107] 国能日新. 风电功率预测系统SPWF-3000预测精度超90%[EB/OL]. (2016-01-15) [2024-09-27]. https://wind.in-en. com/html/wind-2255386.shtml. State Power Rixin Tech. Co., Ltd. Wind power prediction system SPWF-3000 prediction accuracy exceeds 90% [EB/OL]. (2016-01-15) [2024-09-27]. https://wind.in-en.com/html/wind-2255386.shtml. [108] 东润环能(北京)科技有限公司. 风电功率预测系统WPFS Ver1.0[EB/OL]. (2010-01-20) [2024-09-27]. https:// www.docin.com/p-244591706.html. Beijing East E-Energy Technology Co., Ltd. Wind power forecasting system WPFS Ver1.0[EB/OL]. (2010-01-20) [2024-09-27]. https://www.docin.com/p-244591706.html. [109] 北京中科伏瑞电气技术有限公司. FR3000F风电功率预测系统[EB/OL]. (2010-09-01) [2024-09-27]. https://www. doc88.com/p-1314623492057.html. Beijing Zhongke Furui Electric Technology Co., Ltd. FR3000F wind power prediction system[EB/OL]. (2010-09-01) [2024-09-27]. https://www.doc88.com/p-1314623492 057.html. [110] 于海江. 国内首套风电中长期功率预测系统的甘肃答卷 [EB/OL]. (2021-06-03) [2024-09-27]. https://cpnn.com.cn/dianli/fadian/fadianyw/202106/t20210601_1388160.html. YU H J. Gansu answer sheet of the first domestic medium- and long-term power prediction system for wind power [EB/OL]. (2021-06-03) [2024-09-27]. https://cpnn.com.cn/dianli/fadian/fadianyw/202106/t20210601_1388160.html. [111] LIU T, LIU N, LIU G. Short-term wind power prediction based on CNN-Transformer[C]//Proceedings of the 31st International Conference on Neural Information Processing. Cham: Springer, 2024: 1-15. [112] LIU H, YU C Q, WU H P, et al. A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting[J]. Energy, 2020, 202: 117794. [113] ZHOU Z Y, SUN S W, GAO Y. Short-term wind power prediction based on EMD-LSTM[C]//Proceedings of the 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications. Piscataway: IEEE, 2023: 802-807. [114] KARIJADI I, CHOU S Y, DEWABHARATA A. Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method[J]. Renewable Energy, 2023, 218: 119357. [115] YIN H, OU Z H, HUANG S Q, et al. A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition[J]. Energy, 2019, 189: 116316. [116] ZHAO Z, NAN H G, LIU Z H, et al. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM[J]. Environmental Science and Pollution Research International, 2022, 29(38): 58097-58109. [117] WANG M S, TIAN Z D. Ultra-short-term wind speed prediction based on empirical wavelet transform and combined model[J]. Earth Science Informatics, 2024, 17(1): 539-560. [118] LIU Y, GUAN L, HOU C, et al. Wind power short-term prediction based on LSTM and discrete wavelet transform[J]. Applied Sciences, 2019, 9(6): 1108. [119] 宿亚浩. 基于图像的风电功率曲线异常数据清洗与识别方法研究[D]. 桂林: 桂林电子科技大学, 2021. SU Y H. Research on image-based method for cleaning and identifying abnormal data of wind power curve[D]. Guilin: Guilin University of Electronic Technology, 2021. [120] LEE Y, PARK C, KIM N, et al. LSTM-autoencoder based anomaly detection using vibration data of wind turbines[J]. Sensors, 2024, 24(9): 2833. [121] MISHRA S, KSHIRSAGAR V, DWIVEDULA R, et al. Attention-based Bi-LSTM for anomaly detection on time-series data[C]//Proceedings of the 2021 International Conference on Artificial Neural Networks and Machine Learning. Cham: Springer, 2021: 129-140. [122] ZHOU G Y, ZHANG D X, ZHANG Y, et al. Wind power prediction based on ransac data screening and Seq2seq-Bigru model[J]. SSRN Electronic Journal, 2023: 257325173. [123] ZHANG P, WANG Y L, LIANG L K, et al. Short-term wind power prediction using GA-BP neural network based on DBSCAN algorithm outlier identification[J]. Processes, 2020, 8(2): 157. [124] 武煜昊, 王永生, 徐昊, 等. 风电输出功率预测技术研究综述[J]. 计算机科学与探索, 2022, 16(12): 2653-2677. WU Y H, WANG Y S, XU H, et al. Survey of wind power output power forecasting technology[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2653-2677. [125] KAHRAMAN A, YANG G, HOU P. Wind power forecasting using LSTM incorporating Fourier transformation based denoising technique[C]//Proceedings of the 20th International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants. London: IET, 2021: 94-98. [126] SUN Y, YANG J J, ZHANG X T, et al. An ultra-short-term wind power forecasting model based on EMD-EncoderForest-TCN[J]. IEEE Access, 2024, 12: 60058-60069. [127] WANG L J, DONG L, HAO Y, et al. Wind power prediction using wavelet transform and chaotic characteristics[C]//Proceedings of the 2009 World Non-Grid-Connected Wind Power and Energy Conference. Piscataway: IEEE, 2009: 1-5. [128] ZHENG H, HU Z D, WANG X G, et al. VMD-CAT: a hybrid model for short-term wind power prediction[J]. Energy Reports, 2023, 9: 199-211. [129] ZHANG Y J, ZHANG L, SUN D, et al. Short-term wind power forecasting based on VMD and a hybrid SSA-TCN-BiGRU network[J]. Applied Sciences, 2023, 13(17): 9888. [130] ZHOU G Y, HU G F, ZHANG D X, et al. A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model[J]. Energy, 2023, 283: 128986. [131] LIU X, ZHANG Z J. A two-stage deep autoencoder-based missing data imputation method for wind farm SCADA data[J]. IEEE Sensors Journal, 2021, 21(9): 10933-10945. [132] NAZÁBAL A, OLMOS P M, GHAHRAMANI Z, et al. Handling incomplete heterogeneous data using VAEs[J]. Pattern Recognition, 2020, 107: 107501. [133] HWANG J, SUH D. CC-GAIN: clustering and classification-based generative adversarial imputation network for missing electricity consumption data imputation[J]. Expert Systems with Applications, 2024, 255: 124507. [134] QU F M, LIU J H, MA Y J, et al. A novel wind turbine data imputation method with multiple optimizations based on GANs[J]. Mechanical Systems and Signal Processing, 2020, 139: 106610. [135] CHE Z P, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8(1): 6085. [136] LI T, TANG J C, JIANG F, et al. Fill missing data for wind farms using long short-term memory based recurrent neural network[C]//Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference. Piscataway: IEEE, 2019: 705-709. [137] FLORES A, TITO-CHURA H, YANA-MAMANI V. Wind speed time series imputation with a bidirectional gated recurrent unit (GRU) model[C]//Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2. Cham: Springer, 2021: 445-458. [138] FINAMORE A R, CALDERARO V, GALDI V, et al. Improving wind power generation forecasts: a hybrid ANN-clustering-PSO approach[J]. Energies, 2023, 16(22): 7522. [139] XU A R, YANG T, JI J W, et al. Application of cluster analysis in short-term wind power forecasting model[J]. The Journal of Engineering, 2019(9): 5423-5426. [140] SHOUKAT G, MALEKJAFARIAN A, PAKRASHI V. A comparative study for using deep LSTMs and ARIMA for imputing missing data for wind data in the Irish Sea[EB/OL]. [2024-09-27]. https://www.preprints.org/manuscript/202405.1179/v1. [141] SHAHID F, ZAMEER A, MUNEEB M. A novel genetic LSTM model for wind power forecast[J]. Energy, 2021, 223: 120069. [142] GAO X Z, GUO W, MEI C X, et al. Short-term wind power forecasting based on SSA-VMD-LSTM[J]. Energy Reports, 2023, 9: 335-344. [143] WANG Z, YING Y W, KOU L, et al. Ultra-short-term offshore wind power prediction based on PCA-SSA-VMD and BiLSTM[J]. Sensors, 2024, 24(2): 444. [144] AN G Q, CHEN L B, TAN J X, et al. Ultra-short-term wind power prediction based on PVMD-ESMA-DELM[J]. Energy Reports, 2022, 8: 8574-8588. [145] YU M, NIU D X, GAO T, et al. A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism[J]. Energy, 2023, 269: 126738. [146] MUNEEB M. LSTM input timestep optimization using simulated annealing for wind power predictions[J]. PLoS One, 2022, 17(10): e0275649. [147] ARORA P, JALALI S M J, AHMADIAN S, et al. Probabilistic wind power forecasting using optimized deep auto-regressive recurrent neural networks[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 2814-2825. [148] SEMERO Y K, ZHANG J H, ZHENG D H, et al. A GA-PSO hybrid algorithm based neural network modeling technique for short-term wind power forecasting[J]. Distributed Generation & Alternative Energy Journal, 2018, 33(4): 26-43. [149] AN G Q, JIANG Z Y, CHEN L B, et al. Ultra short-term wind power forecasting based on sparrow search algorithm optimization deep extreme learning machine[J]. Sustainability, 2021, 13(18): 10453. [150] LAKSHMI V V, GIRIPRASAD S, VIMAL S P, et al. Wind power forecasting with support vector machines using sparrow search algorithm[C]//Proceedings of the 2024 2nd International Conference on Computer, Communication and Control. Piscataway: IEEE, 2024: 1-5. [151] HABTEMARIAM E T, KEKEBA K, MARTÍNEZ-BALLESTEROS M, et al. A Bayesian optimization-based LSTM model for wind power forecasting in the adama district, Ethiopia[J]. Energies, 2023, 16(5): 2317. [152] ZONG C S, GAO Q Z, WU S. Short-term wind power prediction based on DWT-PSO-LSTM[J]. Journal of Physics: Conference Series, 2023(1): 012037. [153] ZHANG C, WANG Y H, FU Y Y, et al. A novel DWTimesNet-based short-term multi-step wind power forecasting model using feature selection and auto-tuning methods[J]. Energy Conversion and Management, 2024, 301: 118045. [154] YANG S M, YUAN A J, YU Z Q. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting[J]. Environmental Science and Pollution Research International, 2023, 30(5): 11689-11705. |
[1] | 孟祥福, 师光启, 张霄雁, 冷强奎, 方金凤. 基于深度学习的轨迹相似性度量方法研究综述[J]. 计算机科学与探索, 2025, 19(3): 623-644. |
[2] | 李坤, 李斌, 朱文静, 周清雷. 融合语义与属性特征的跨架构漏洞检测[J]. 计算机科学与探索, 2025, 19(3): 787-801. |
[3] | 蒙秀扬, 王世屹, 李渡渡, 王春玲. 机器学习在社交媒体用户自杀意念检测中的应用综述[J]. 计算机科学与探索, 2025, 19(3): 559-581. |
[4] | 陈冲, 朱啸宇, 王芳, 许雅倩, 张伟. 物理引导的深度学习研究综述:进展、挑战和展望[J]. 计算机科学与探索, 2025, 19(2): 277-294. |
[5] | 马倩, 董武, 曾庆涛, 张艳, 陆利坤, 周子镱. 图像重定向及客观质量评价方法综述[J]. 计算机科学与探索, 2025, 19(2): 316-333. |
[6] | 唐小勇, 王浩东. 融合子图选择和邻域过滤的信贷欺诈审核方法[J]. 计算机科学与探索, 2025, 19(2): 465-475. |
[7] | 王永贵, 于琦. 结合图同构和混合阶残差门控图神经网络的会话推荐[J]. 计算机科学与探索, 2025, 19(2): 502-512. |
[8] | 程佳琳, 袁得嵛, 孙泽宇, 陈梓彦. 基于SDNE嵌入表达的深度学习跨网络身份关联方法[J]. 计算机科学与探索, 2025, 19(2): 417-428. |
[9] | 杨梅君, 姚若侠, 谢娟英. CARFB:即插即用的目标检测模块[J]. 计算机科学与探索, 2025, 19(1): 223-236. |
[10] | 王永威, 魏德健, 曹慧, 姜良. 深度学习在心力衰竭检测中的应用综述[J]. 计算机科学与探索, 2025, 19(1): 65-78. |
[11] | 屠佳琪, 张华, 常晓洁, 王佶, 袁书宏. 融合注意力的异构信息网络嵌入学习综述[J]. 计算机科学与探索, 2025, 19(1): 1-29. |
[12] | 郭佳霖, 智敏, 殷雁君, 葛湘巍. 图像处理中CNN与视觉Transformer混合模型研究综述[J]. 计算机科学与探索, 2025, 19(1): 30-44. |
[13] | 杨晨, 徐昊, 朱佳伟, 吴秦, 柴志雷. LightGCNet:基于轻量化卷积网络的深度色域压缩算法[J]. 计算机科学与探索, 2025, 19(1): 196-210. |
[14] | 张岚泽, 顾益军, 彭竞杰. 面向异构社交网络的空-频域自适应图神经网络[J]. 计算机科学与探索, 2025, 19(1): 169-186. |
[15] | 吴梦可, 高心丹. 双编码端高分辨率遥感影像语义分割算法[J]. 计算机科学与探索, 2025, 19(1): 187-195. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||