[1] 詹奇, 潘圣益, 胡星, 等. 开源软件漏洞感知技术综述[J]. 软件学报, 2024, 35(1): 19-37.
ZHAN Q, PAN S Y, HU X, et al. Survey on vulnerability awareness of open source software[J]. Journal of Software, 2024, 35(1): 19-37.
[2] 李韵, 黄辰林, 王中锋, 等. 基于机器学习的软件漏洞挖掘方法综述[J]. 软件学报, 2020, 31(7): 2040-2061.
LI Y, HUANG C L, WANG Z F, et al. Survey of software vulnerability mining methods based on machine learning[J]. Journal of Software, 2020, 31(7): 2040-2061.
[3] DUAN Y, LI X, WANG J H, et al. DeepBinDiff: learning program-wide code representations for binary diffing[C]//Proceedings of the 2020 Network and Distributed System Security Symposium, 2020: 1-9.
[4] FENG Q, WANG M H, ZHANG M, et al. Extracting conditional formulas for cross-platform bug search[C]//Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. New York: ACM, 2017: 346-359.
[5] 方磊, 魏强, 武泽慧, 等. 基于神经网络的二进制函数相似性检测技术[J]. 计算机科学, 2021, 48(10): 286-293.
FANG L, WEI Q, WU Z H, et al. Neural network-based binary function similarity detection[J]. Computer Science, 2021, 48(10): 286-293.
[6] KIM G, HONG S, FRANZ M, et al. Improving cross-platform binary analysis using representation learning via graph alignment[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2022: 151-163.
[7] LI X, QU Y, YIN H, et al. PalmTree: learning an assembly language model for instruction embedding[C]//Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 3236-3251.
[8] COLLYER J, WATSON T, PHILLIPS I. FASER: binary code similarity search through the use of intermediate representations[C]//Proceedings of the 2023 Conference on Applied Machine Learning in Information Security, 2023: 193-202.
[9] WANG H, GAO Z Y, ZHANG C, et al. CLAP: learning transferable binary code representations with natural language supervision[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2024: 503-515.
[10] KHURANA D, KOLI A, KHATTER K, et al. Natural language processing: state of the art, current trends and challenges[J]. Multimedia Tools and Applications, 2023, 82(3): 3713-3744.
[11] PEI K X, XUAN Z, YANG J F, et al. TREX: learning execution semantics from micro-traces for binary similarity[EB/OL]. [2024-03-06]. https://arxiv.org/abs/2012.08680.
[12] LUO Z H, WANG P F, WANG B S, et al. VulHawk: cross-architecture vulnerability detection with entropy-based binary code search[C]//Proceedings of the 2023 Network and Distributed System Security Symposium, 2023: 1-18.
[13] CONG S, ZHOU Y. A review of convolutional neural network architectures and their optimizations[J]. Artificial Intelligence Review, 2023, 56(3): 1905-1969.
[14] CHICCO D. Siamese neural networks: an overview[J]. Methods in Molecular Biology, 2021, 2190: 73-94.
[15] XU X J, LIU C, FENG Q, et al. Neural network-based graph embedding for cross-platform binary code similarity detection[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 363-376.
[16] YANG S G, CHENG L, ZENG Y C, et al. Asteria: deep learning-based AST-encoding for cross-platform binary code similarity detection[C]//Proceedings of the 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2021: 224-236.
[17] WANG H J, MA P C, YUAN Y Y, et al. Enhancing DNN-based binary code function search with low-cost equivalence checking[J]. IEEE Transactions on Software Engineering, 2022, 49(1): 226-250.
[18] WANG H, QU W J, KATZ G, et al. jTrans: jump-aware transformer for binary code similarity detection[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2022: 1-13.
[19] DAI H J, DAI B, SONG L, et al. Discriminative embeddings of latent variable models for structured data[C]//Proceedings of the 33rd International Conference on Machine Learning. New York: ACM, 2016: 2702-2711.
[20] LUO Z H, WANG B S, TANG Y, et al. Semantic-based representation binary clone detection for cross-architectures in the Internet of things[J]. Applied Sciences, 2019, 9(16): 3283-3304.
[21] VENKATAKEERTHY S, BANERJEE S, DEY S, et al. VEXIR2Vec: an architecture-neutral embedding framework for binary similarity[EB/OL]. [2024-03-06]. https://arxiv.org/abs/2312.00507.
[22] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2024-03-06]. https://arxiv.org/abs/1907.11692.
[23] MASSARELLI L, DI LUNA G A, PETRONI F, et al. SAFE: self-attentive function embeddings for binary similarity[C]//Proceedings of the 16th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Cham: Springer, 2019: 309-329.
[24] KENTON J D M W C, TOUTANOVA L K. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[25] GROHE M, GROHE M. word2vec, node2vec, graph2vec, X2vec: towards a theory of vector embeddings of structured data[C]//Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. New York: ACM, 2020: 1-16.
[26] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems. Piscataway: IEEE, 2017: 1597-1600.
[27] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[28] YANG S D, YU X Y, ZHOU Y. LSTM and GRU neural network performance comparison study: taking Yelp review dataset as an example[C]//Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence. Piscataway: IEEE, 2020: 98-101.
[29] KIM D, KIM E, CHA S K, et al. Revisiting binary code similarity analysis using interpretable feature engineering and lessons learned[J]. IEEE Transactions on Software Engineering, 2023, 49(4): 1661-1682.
[30] JIANG S, FU C, QIAN Y K, et al. IFAttn: binary code similarity analysis based on interpretable features with attention[J]. Computers & Security, 2022, 120: 102804.
[31] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. |