
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (5): 1177-1197.DOI: 10.3778/j.issn.1673-9418.2407029
杨智勇,郭洁铷,郭子杭,张瑞祥,周瑜
出版日期:2025-05-01
发布日期:2025-04-28
YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu
Online:2025-05-01
Published:2025-04-28
摘要: 在自动驾驶汽车与行人共享空间的路径规划中,精准、高效的行人轨迹预测是保障道路安全的核心问题。行人轨迹预测不仅依赖于历史行为数据,更需全面考虑行人与车辆、交通设施及多方向车辆间的复杂动态交互。近年来,该领域取得了显著进展,逐渐成为研究热点。系统梳理了现有的研究成果,界定了行人轨迹预测的基本概念,并对主流预测方法进行了深入剖析。归纳了行人行为数据的主要来源,包括激光雷达、摄像头等多模态感知设备,并探讨了关键特征提取方式,涵盖行人运动特征、场景上下文特征及交通设施影响等。基于这些数据,对物理模型与数据驱动的预测方法进行了系统总结,重点分析了统计模型、深度学习与强化学习模型的发展现状,尤其是深度学习方法,依据其网络结构进一步细分为序列模型、卷积神经网络、图卷积神经网络和生成对抗网络等类型。总结了该领域常用的数据集和评价指标,对现有算法的性能进行了综合评估。针对行人轨迹预测在自动驾驶中的挑战,尤其是行人与多方向车辆及交通设施之间的动态耦合问题,提出了潜在的解决思路,并展望了未来的研究方向。
杨智勇, 郭洁铷, 郭子杭, 张瑞祥, 周瑜. 道路行人行为轨迹预测研究综述[J]. 计算机科学与探索, 2025, 19(5): 1177-1197.
YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197.
| [1] YIN H L, WEN Y R, LI J X. A survey of vehicle trajectory prediction based on deep-learning[C]//Proceedings of the 2023 3rd International Conference on Neural Networks, Information and Communication Engineering. Piscataway: IEEE, 2023: 140-144. [2] YANG D F, MAROLI J M, LI L H, et al. Crowd motion detection and prediction for transportation efficiency in shared spaces[C]//Proceedings of the 2018 IEEE International Science of Smart City Operations and Platforms Engineering in Partnership with Global City Teams Challenge. Piscataway: IEEE, 2018: 1-6. [3] RINKE N, SCHIERMEYER C, PASCUCCI F, et al. A multi-layer social force approach to model interactions in shared spaces using collision prediction[J]. Transportation Research Procedia, 2017, 25: 1249-1267. [4] 陈龙, 杨晨, 蔡英凤, 等. 基于多模态特征融合的行人穿越意图预测方法[J]. 汽车工程, 2023, 45(10): 1779-1790. CHEN L, YANG C, CAI Y F, et al. Pedestrian crossing intention prediction method based on multimodal feature fusion[J]. Automotive Engineering, 2023, 45(10): 1779-1790. [5] MA Y X, ZHU X G, ZHANG S B, et al. TrafficPredict: trajectory prediction for heterogeneous traffic-agents[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6120-6127. [6] 杨智勇, 郭洁铷, 郭子杭, 等. 基于多特征交互融合的行人过街意图预测[J/OL]. 计算机工程与应用 [2024-11-25]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241122. 1008.006.html. YANG Z Y, GUO J R, GUO Z H, et al. Pedestrian crossing intention prediction based on multi-feature interaction fusion[J/OL]. Computer Engineering and Applications [2024-11-25]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241122.1008. 006.html. [7] YANG B, WEI Z W, HU H Y, et al. DPCIAN: a novel dual-channel pedestrian crossing intention anticipation network[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 6023-6034. [8] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. [9] MEN Q H, SHUM H P H. PyTorch-based implementation of label-aware graph representation for multi-class trajectory prediction[J]. Software Impacts, 2022, 11: 100201. [10] LIANG X D, HU Z T, ZHANG H, et al. Recurrent topic-transition GAN for visual paragraph generation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3382-3391. [11] 石洋宇, 左景, 谢承杰, 等. 多尺度融合与FMB改进的YOLOv8异常行为检测方法[J]. 计算机工程与应用, 2024, 60(9): 101-110. SHI Y Y, ZUO J, XIE C J, et al. Improved YOLOv8 method for anomaly behavior detection with multi-scale fusion and FMB[J]. Computer Engineering and Applications, 2024, 60(9): 101-110. [12] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177. HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 168-177. [13] VIVACQUA R P D, BERTOZZI M, CERRI P, et al. Self-localization based on visual lane marking maps: an accurate low-cost approach for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 582-597. [14] GROLLIUS S, LIGGES M, RUSKOWSKI J, et al. Concept of an automotive LiDAR target simulator for direct time-of-flight LiDAR[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(1): 825-835. [15] SRIVASTAVA A K, SINGHAL A, SHARMA A. Analysis of lidar-based autonomous vehicle detection technologies for recognizing objects[C]//Proceedings of the 2023 6th International Conference on Information Systems and Computer Networks. Piscataway: IEEE, 2023: 1-5. [16] YAO Y, ATKINS E, JOHNSON-ROBERSON M, et al. BiTraP: bi-directional pedestrian trajectory prediction with multi-modal goal estimation[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1463-1470. [17] GILLES T, SABATINI S, TSISHKOU D, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 9107-9114. [18] POIBRENSKI A, KLUSCH M, VOZNIAK I, et al. M2P3: multimodal multi-pedestrian path prediction by self-driving cars with egocentric vision[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York: ACM, 2020: 190-197. [19] GHORI O, MACKOWIAK R, BAUTISTA M, et al. Learning to forecast pedestrian intention from pose dynamics[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2018: 1277-1284. [20] MALLA S, DARIUSH B, CHOI C. TITAN: future forecast using action priors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11186-11196. [21] LIU M M, CHENG H, CHEN L, et al. LAformer: trajectory prediction for autonomous driving with lane-aware scene constraints[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 2039-2049. [22] 刘桂红, 周宗润, 孟祥福. 基于Transformer和多关系图卷积网络的行人轨迹预测[J]. 计算机科学与探索, 2025, 19(5): 1353-1364. LIU G H, ZHOU Z R, MENG X F. Pedestrian trajectory prediction based on Transformers and multi-relation graph convolutional networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. [23] 何佳旭, 陈金立, 李爱庆, 等. 基于Transformer-LSTM模型的毫米波雷达行人轨迹预测方法[J]. 中国电子科学研究院学报, 2023, 18(6): 513-520. HE J X, CHEN J L, LI A Q, et al. Pedestrian trajectory prediction method for millimeter wave radar based on Transformer-LSTM model[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(6): 513-520. [24] MUDULI K, SAHU V, GHOSH I. Predicting pedestrian movement in unsignalized crossings: a contextual cue-based approach[C]//Proceedings of the 2024 16th International Conference on Communication Systems & Networks. Piscataway: IEEE, 2024: 204-209. [25] GUO J, LV P F, LI D Y. A motion logic network for pedestrian motion prediction[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2531-2537. [26] ZHAO L, ZHOU H, ZHU X G, et al. LIF-Seg: LiDAR and camera image fusion for 3D LiDAR semantic segmentation[J]. IEEE Transactions on Multimedia, 2023, 26: 1158-1168. [27] 姚杰, 操星, 平红, 等. STMS: 一种基于时空注意力机制的行人轨迹预测模型[J/OL]. 云南民族大学学报(自然科学版) [2024-07-31]. http://kns.cnki.net/kcms/detail/53.1192.N.20240708.1101.002.html. YAO J, CAO X, PING H, et al. STMS: a pedestrian trajectory prediction model based on spatio-temporal attention mechanism[J/OL]. Journal of Yunnan University for Nationalities (Natural Science Edition) [2024-07-31]. http://kns.cnki.net/kcms/detail/53.1192.N.20240708.1101.002.html. [28] ALVAREZ W M, MORENO F M, SIPELE O, et al. Autonomous driving: framework for pedestrian intention estimation in a real world scenario[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 39-44. [29] PHAN-MINH T, GRIGORE E C, BOULTON F A, et al. CoverNet: multimodal behavior prediction using trajectory sets[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14074-14083. [30] RASOULI A, YAU T, ROHANI M, et al. Multi-modal hybrid architecture for pedestrian action prediction[C]//Proceedings of the 2022 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2022: 91-97. [31] VARYTIMIDIS D, ALONSO-FERNANDEZ F, DURAN B, et al. Action and intention recognition of pedestrians in urban traffic[C]//Proceedings of the 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems. Piscataway: IEEE, 2018: 676-682. [32] XU Y R, YANG X Y, GONG L H, et al. Explainable object-induced action decision for autonomous vehicles[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9523-9532. [33] WANG T J, WU J P, ZHENG P J, et al. Study of pedestrians?? gap acceptance behavior when they jaywalk outside crossing facilities[C]//Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2010: 1295-1300. [34] YANG Z, GUO Z, ZHANG R, et al. FHPE-Net: pedestrian intention prediction using fusion with head pose estimation based on RNN[J]. Information Technology and Control, 2024, 53(3): 899-915. [35] CAO D, FU Y B. Using graph convolutional networks skeleton-based pedestrian intention estimation models for trajectory prediction[J]. Journal of Physics: Conference Series, 2020, 1621(1): 012047. [36] ROBICQUET A, SADEGHIAN A, ALAHI A, et al. Learning social etiquette: human trajectory understanding in crowded scenes[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 549-565. [37] KABTOUL M, SPALANZANI A, MARTINET P. Towards proactive navigation: a pedestrian-vehicle cooperation based behavioral model[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 6958-6964. [38] NICOLAS A, HASSAN F H. Social groups in pedestrian crowds: review of their influence on the dynamics and their modelling[J]. Transportmetrica A: Transport Science, 2023, 19(1): 1970651. [39] ZHAI X Q, HUANG H L, SZE N N, et al. Diagnostic analysis of the effects of weather condition on pedestrian crash severity[J]. Accident Analysis & Prevention, 2019, 122: 318-324. [40] RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: a survey[J]. The International Journal of Robotics Research, 2020, 39(8): 895-935. [41] ZHANG W C, CHENG H, JOHORA F T, et al. ForceFormer: exploring social force and transformer for pedestrian trajectory prediction[C]//Proceedings of the 2023 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2023: 1-7. [42] JOHORA F T, MüLLER J P. Modeling interactions of multimodal road users in shared spaces[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 3568-3574. [43] ZHAO C Y, CHU D F, DENG Z J, et al. Human-like decision making for autonomous driving with social skills[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 12269-12284. [44] SHAN S F, SHAO J J, ZHANG H J, et al. Research and validation of self-driving path planning algorithm based on optimized A*-artificial potential field method[J]. IEEE Sensors Journal, 2024, 24(15): 24708-24722. [45] ZHANABATYROVA A, SOUZA LEITE C F, XIAO Y. Automatic map update using dashcam videos[J]. IEEE Internet of Things Journal, 2023, 10(13): 11825-11843. [46] 杨智勇, 胡耀文, 许沁欣. 智能网联汽车边缘计算任务卸载研究综述[J]. 重庆交通大学学报(自然科学版), 2024, 43(12): 98-110. YANG Z Y, HU Y W, XU Q X. Research review on task offloading of edge computing for intelligent connected vehicles[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(12): 98-110. [47] KORBMACHER R, TORDEUX A. Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24126-24144. [48] ZHANG S L, ABDEL-ATY M, WU Y N, et al. Pedestrian crossing intention prediction at red-light using pose estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 2331-2339. [49] SUN L F, ZHAN W, WANG D, et al. Interactive prediction for multiple, heterogeneous traffic participants with multi-agent hybrid dynamic Bayesian network[C]//Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 1025-1031. [50] ANDERSON C, VASUDEVAN R, JOHNSON-ROBERSON M. Off the beaten sidewalk: pedestrian prediction in shared spaces for autonomous vehicles[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6892-6899. [51] YANG B, ZHU J R, HU C, et al. Faster pedestrian crossing intention prediction based on efficient fusion of diverse intention influencing factors[J]. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9071-9087. [52] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 961-971. [53] TRAUTMAN P, KRAUSE A. Unfreezing the robot: navigation in dense, interacting crowds[C]//Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2010: 797-803. [54] ELLIS D, SOMMERLADE E, REID I. Modelling pedestrian trajectory patterns with Gaussian processes[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 1229-1234. [55] KIM K, LEE D, ESSA I. Gaussian process regression flow for analysis of motion trajectories[C]//Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1164-1171. [56] FERGUSON S, LUDERS B, GRANDE R C, et al. Real-time predictive modeling and robust avoidance of pedestrians with uncertain, changing intentions[C]//Algorithmic Foundations of Robotics XI: Selected Contributions of the 7th International Workshop on the Algorithmic Foundations of Robotics. Cham: Springer, 2015: 161-177. [57] BENNEWITZ M, BURGARD W, CIELNIAK G, et al. Learning motion patterns of people for compliant robot motion[J]. The International Journal of Robotics Research, 2005, 24(1): 31-48. [58] CHEN Y F, EVERETT M, LIU M, et al. Socially aware motion planning with deep reinforcement learning[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 1343-1350. [59] TANG Y J, HE H W, WANG Y, et al. Using a diffusion model for pedestrian trajectory prediction in semi-open autonomous driving environments[J]. IEEE Sensors Journal, 2024, 24(10): 17208-17218. [60] GIULIARI F, HASAN I, CRISTANI M, et al. Transformer networks for trajectory forecasting[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10335-10342. [61] ZHOU Z, HUANG G, SU Z X, et al. Dynamic attention-based CVAE-GAN for pedestrian trajectory prediction[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 704-711. [62] IVANOVIC B, LEUNG K, SCHMERLING E, et al. Multimodal deep generative models for trajectory prediction: a conditional variational autoencoder approach[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 295-302. [63] RIDEL D A, DEO N, WOLF D, et al. Understanding pedestrian-vehicle interactions with vehicle mounted vision: an LSTM model and empirical analysis[C]//Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 913-918. [64] RASOULI A, ROHANI M, LUO J. Bifold and semantic reasoning for pedestrian behavior prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15580-15590. [65] YANG C L, PEI Z. Long-short term spatio-temporal aggregation for trajectory prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4114-4126. [66] ZHANG C, NI Z J, BERGER C. Spatial-temporal-spectral LSTM: a transferable model for pedestrian trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2836-2849. [67] RASOULI A, KOTSERUBA I, TSOTSOS J K. Pedestrian action anticipation using contextual feature fusion in stacked RNNs[EB/OL]. [2024-05-27]. https://arxiv.org/abs/2005. 06582. [68] ARCHANA M, VIJI R, GANAPATHY S. A CNN-GRU based hybrid approach for pedestrian trajectory prediction[C]//Proceedings of the 2024 10th International Conference on Communication and Signal Processing. Piscataway: IEEE, 2024: 1611-1616. [69] LORENZO J, PARRA I, WIRTH F, et al. RNN-based pedestrian crossing prediction using activity and pose-related features[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1801-1806. [70] WANG X S, BAI W, MENG Z K, et al. The prediction of flow in railway station based on RRC-STGCN[J]. IEEE Access, 2023, 11: 131128-131139. [71] HOY M, TU Z G, DANG K, et al. Learning to predict pedestrian intention via variational tracking networks[C]//Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018: 3132-3137. [72] MANGALAM K, ADELI E, LEE K H, et al. Disentangling human dynamics for pedestrian locomotion forecasting with noisy supervision[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2784-2793. [73] KUMAR R V B S P, SRINIVAS K, AMUDHA J. Autonomous vehicle along with surrounding agent??s path prediction using CNN-based models[C]//Proceedings of the 2023 International Conference on Computing, Communication, and Intelligent Systems. Piscataway: IEEE, 2023: 39-45. [74] ZHANG C, BERGER C. Learning the pedestrian-vehicle interaction for pedestrian trajectory prediction[C]//Proceedings of the 2022 8th International Conference on Control, Automation and Robotics. Piscataway: IEEE, 2022: 230-236. [75] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6262-6271. [76] ZAMBONI S, KEFATO Z T, GIRDZIJAUSKAS S, et al. Pedestrian trajectory prediction with convolutional neural networks[J]. Pattern Recognition, 2022, 121: 108252. [77] ZHANG X X, ZHANG W W, WU X C, et al. Probabilistic trajectory prediction of heterogeneous traffic agents based on layered spatio-temporal graph[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(9): 2413-2424. [78] BHATTACHARYYA A, FRITZ M, SCHIELE B. Long-term on-board prediction of pedestrians in traffic scenes[C]//Proceedings of the 1st Conference on Robot Learning, 2017. [79] LI J C, MA H B, ZHANG Z H, et al. Spatio-temporal graph dual-attention network for multi-agent prediction and trac-king[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10556-10569. [80] 杨智勇, 杨俊, 许沁欣. 基于时空特征融合与候选策略的智能汽车多模态轨迹预测[J/OL]. 计算机工程与应用[2024-07-31]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20240626.1502.017.html. YANG Z Y, YANG J, XU Q X. Multimodal trajectory prediction for intelligent vehicles based on spatio-temporal feature fusion and candidate strategies[J/OL]. Computer Engineering and Applications [2024-07-31]. http://kns. cnki.net/kcms/detail/11.2127.TP.20240626.1502.017.html. [81] RAINBOW B A, MEN Q H, SHUM H P H. Semantics-STGCNN: a semantics-guided spatial-temporal graph convolutional network for multi-class trajectory prediction[C]// Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2021: 2959-2966. [82] LIU B B, ADELI E, CAO Z J, et al. Spatiotemporal relationship reasoning for pedestrian intent prediction[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3485-3492. [83] HUANG L, ZHUANG J H, CHENG X M, et al. STI-GAN: multimodal pedestrian trajectory prediction using spatiotemporal interactions and a generative adversarial network[J]. IEEE Access, 2021, 9: 50846-50856. [84] LV P, WANG W T, WANG Y X, et al. SSAGCN: social soft attention graph convolution network for pedestrian trajectory prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(9): 11989-12003. [85] LIAN J, REN W W, LI L H, et al. PTP-STGCN: pedestrian trajectory prediction based on a spatio-temporal graph convolutional neural network[J]. Applied Intelligence, 2023, 53(3): 2862-2878. [86] 陈浩东, 纪庆革. 用于行人轨迹预测的场景限制时空图卷积网络[J]. 中国图象图形学报, 2023, 28(10): 3163-3175. CHEN H D, JI Q G. Scene-constrained spatial-temporal graph convolutional network for pedestrian trajectory prediction[J]. Journal of Image and Graphics, 2023, 28(10): 3163-3175. [87] YU C F, WANG M. Pedestrian trajectory prediction based on multi-head self-attention and sparse graph convolution[C]//Proceedings of the 2024 4th International Conference on Neural Networks, Information and Communication Engineering. Piscataway: IEEE, 2024: 1723-1729. [88] LING Y C, MA Z L, ZHANG Q, et al. PedAST-GCN: fast pedestrian crossing intention prediction using spatial-temporal attention graph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 13277-13290. [89] CADENA P R G, QIAN Y Q, WANG C X, et al. Pedestrian graph: a fast pedestrian crossing prediction model based on graph convolutional networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21050-21061. [90] SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 683-700. [91] 宋雨, 王帮海, 曹钢钢. 结合数据增强与特征融合的跨模态行人重识别[J]. 计算机工程与应用, 2024, 60(4): 133-141. SONG Y, WANG B H, CAO G G. Cross-modality person re-identification combined with data augmentation and feature fusion[J]. Computer Engineering and Applications, 2024, 60(4): 133-141. [92] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2255-2264. [93] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1349-1358. [94] AMIRIAN J, HAYET J B, PETTRé J. Social ways: lear-ning multi-modal distributions of pedestrian trajectories with GANs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2964-2972. [95] KOSARAJU V, SADEGHIAN A, MARTíN-MARTíN R, et al. Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[EB/OL]. [2024-05-27]. https://arxiv.org/abs/1907.03395. [96] LV Z Z, HUANG X C, CAO W G. An improved GAN with transformers for pedestrian trajectory prediction models[J]. International Journal of Intelligent Systems, 2022, 37(8): 4417-4436. [97] LAI W C, XIA Z X, LIN H S, et al. Trajectory prediction in heterogeneous environment via attended ecology embedding[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 202-210. [98] ZHOU H, MA R, ZHANG L X, et al. SAC-GAN: structure-aware image composition[J]. IEEE Transactions on Visua-lization and Computer Graphics, 2024, 30(7): 3151-3165. [99] XIE J J, ZHANG S, XIA B H, et al. Pedestrian trajectory prediction based on social interactions learning with random weights[J]. IEEE Transactions on Multimedia, 2024, 26: 7503-7515. [100] GU T P, CHEN G Y, LI J L, et al. Stochastic trajectory prediction via motion indeterminacy diffusion[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17092-17101. [101] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723. [102] RATLIFF N D, BAGNELL J A, ZINKEVICH M A. (Online) subgradient methods for structured prediction[J]. Journal of Machine Learning Research, 2007, 2: 380-387. [103] HERMAN M, FISCHER V, GINDELE T, et al. Inverse reinforcement learning of behavioral models for online-adapting navigation strategies[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2015: 3215-3222. [104] KRETZSCHMAR H, SPIES M, SPRUNK C, et al. Socially compliant mobile robot navigation via inverse reinforcement learning[J]. The International Journal of Robotics Research, 2016, 35(11): 1289-1307. [105] 胡伟超, 杨镇铭, 于鹏程, 等. 基于深度强化学习的自动驾驶车辆与行人交互建模[J/OL]. 吉林大学学报(工学版)[2024-07-31]. https://doi.org/10.13229/j.cnki.jdxbgxb. 20240017. HU W C, YANG Z M, YU P C, et al. Interaction modeling of autonomous vehicles and pedestrians based on deep reinforcement learning[J/OL]. Journal of Jilin University(Engineering Science) [2024-07-31]. https://doi.org/10. 13229/j.cnki.jdxbgxb.20240017. [106] KITANI K M, ZIEBART B D, BAGNELL J A, et al. Activity forecasting[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 201-214. [107] WULFMEIER M, WANG D Z, POSNER I. Watch this: scalable cost-function learning for path planning in urban environments[C]//Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2016: 2089-2095. [108] NASERNEJAD P, SAYED T, ALSALEH R. Modeling pedestrian behavior in pedestrian-vehicle near misses: a continuous Gaussian process inverse reinforcement learning (GP-IRL) approach[J]. Accident Analysis & Prevention, 2021, 161: 106355. [109] NASERNEJAD P, SAYED T, ALSALEH R. Multiagent modeling of pedestrian-vehicle conflicts using adversarial inverse reinforcement learning[J]. Transportmetrica A: Transport Science, 2023, 19(3): 2061081. [110] RASOULI A, KOTSERUBA I, TSOTSOS J K. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 206-213. [111] ZHU J F, LIAN Z C, JIANG Z K. A spatio-temporal graph transformer network for multi-pedestrain trajectory prediction[C]//Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2022: 1-5. |
| [1] | 周楠, 董永权, 闫林克, 金家永, 贺步贵. 融合学生知识状态与混沌萤火虫算法的习题推荐研究[J]. 计算机科学与探索, 2025, 19(6): 1620-1631. |
| [2] | 朱佳音, 李杨, 李明, 马金刚. 深度学习在宫颈细胞分割中的应用综述[J]. 计算机科学与探索, 2025, 19(6): 1476-1493. |
| [3] | 梁洁欣, 冯跃, 李健忠, 陈涛, 林卓胜, 何盈, 王松柏. 中医体质智能辨识方法的研究综述[J]. 计算机科学与探索, 2025, 19(6): 1455-1475. |
| [4] | 吕伏, 郑禹, 齐光尧, 李浩然. 极坐标编解码的轻量化SAR图像舰船斜框检测算法[J]. 计算机科学与探索, 2025, 19(6): 1564-1579. |
| [5] | 许德龙, 林民, 王玉荣, 张树钧. 基于大语言模型的NLP数据增强方法综述[J]. 计算机科学与探索, 2025, 19(6): 1395-1413. |
| [6] | 李云飞, 魏霞, 蔡鑫, 吕明昱, 罗相涵. TCTP-YOLO:盲人出行的典型障碍物及交通标志检测方法[J]. 计算机科学与探索, 2025, 19(6): 1540-1552. |
| [7] | 李国威, 刘静, 曹慧, 姜良. 深度学习在结肠息肉图像分割中的研究综述[J]. 计算机科学与探索, 2025, 19(5): 1198-1216. |
| [8] | 王宁, 智敏. 深度学习下的单阶段通用目标检测算法研究综述[J]. 计算机科学与探索, 2025, 19(5): 1115-1140. |
| [9] | 李少波, 王晓强, 郭利彪, 红英, 王志国. 草类植物无人机遥感图像中深度学习应用综述[J]. 计算机科学与探索, 2025, 19(5): 1157-1176. |
| [10] | 刘桂红, 周宗润, 孟祥福. 基于Transformer和多关系图卷积网络的行人轨迹预测[J]. 计算机科学与探索, 2025, 19(5): 1353-1364. |
| [11] | 李汉章, 严宣辉, 李镇力, 严雨薇, 王廷银. 面向多变量时间序列异常检测的双图注意力网络模型[J]. 计算机科学与探索, 2025, 19(4): 1048-1064. |
| [12] | 杨思念, 曹立佳, 杨洋, 郭川东. 基于机器视觉的PCB缺陷检测算法研究综述[J]. 计算机科学与探索, 2025, 19(4): 901-915. |
| [13] | 刘谭, 刘娜, 刘贵平, 刘坤杰, 刘敏, 庄旭菲, 张中豪. 深度学习方法在风电功率预测中的应用与研究方向概述[J]. 计算机科学与探索, 2025, 19(3): 602-622. |
| [14] | 蒙秀扬, 王世屹, 李渡渡, 王春玲. 机器学习在社交媒体用户自杀意念检测中的应用综述[J]. 计算机科学与探索, 2025, 19(3): 559-581. |
| [15] | 孟祥福, 师光启, 张霄雁, 冷强奎, 方金凤. 基于深度学习的轨迹相似性度量方法研究综述[J]. 计算机科学与探索, 2025, 19(3): 623-644. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||