计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (12): 3153-3178.DOI: 10.3778/j.issn.1673-9418.2503013

• 前沿·综述 • 上一篇    下一篇

光场图像质量评价综述

刘意,董武,陆利坤,马倩,周子镱,张二青   

  1. 北京印刷学院 信息工程学院,北京 102600
  • 出版日期:2025-12-01 发布日期:2025-12-01

Review of Light Field Image Quality Assessment

LIU Yi, DONG Wu, LU Likun, MA Qian, ZHOU Ziyi, ZHANG Erqing   

  1. College of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Online:2025-12-01 Published:2025-12-01

摘要: 光场图像在采集、压缩、传输、重建和显示过程中易产生失真,影响用户的视觉体验。针对不同的失真类型,研究人员提出了不同的质量评价方法来准确评估光场图像的质量。现有的光场图像质量评价方法综述通常从参考信息、映射技术等角度进行分类,但这两种分类基准往往无法全面地反映光场图像在空间信息和角度信息上的独特性。对目前光场图像质量评价的研究进展进行了较为全面的总结。根据光场图像的表现形式不同,将光场图像质量评价方法分为六类,分别为子孔径图像的质量评价方法、极平面图像的质量评价方法、微透镜图像的质量评价方法、伪视频序列的质量评价方法、重聚焦图像的质量评价方法和混合提取方法,并介绍了近年来的代表性方法,总结归纳了每类方法的优势和局限性。列举了常用于质量评价的七个光场图像数据集和三个性能评价指标,并从表现形式的特点、数据集以及模型结构三个方面对不同方法的性能进行了比较与分析。从多模态、模型轻量化、大模型、人眼视觉系统和高维拓展等方面展望了光场图像质量评价方法的未来发展趋势。

关键词: 光场图像, 质量评价, 光场图像的表现形式, 人眼视觉系统

Abstract: Distortions often occur during the acquisition, compression, transmission, reconstruction, and display of light field images, degrading the visual experience of users. To address different types of distortions, researchers have proposed various quality assessment methods to accurately evaluate light field image quality. Existing reviews of light field image quality assessment methods typically classify them based on reference information or mapping techniques. However, these classification criteria fail to fully capture the unique spatial and angular characteristics of light field images. This paper provides a review of recent advancements in light field image quality assessment. Firstly, based on the representation forms of light field images, the quality assessment methods are categorized into six types: sub-aperture image-based methods, epipolar plane image-based methods, micro-lens image-based methods, pseudo video sequence-based methods, refocused image-based methods, and mixed extraction methods. Representative methods from recent years are introduced, and the strengths and limitations of each category are summarized. Then, seven commonly used light field image datasets and three performance evaluation metrics are listed, and the performance of different methods is compared and analyzed from the perspectives of representation characteristics, datasets, and model structures. Finally, future research directions are discussed, including multimodal fusion, model lightweighting, large-scale models, human visual system modeling, and high-dimensional extensions.

Key words: light field image, quality assessment, representation of light field image, human visual system