
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (12): 3153-3178.DOI: 10.3778/j.issn.1673-9418.2503013
刘意,董武,陆利坤,马倩,周子镱,张二青
出版日期:2025-12-01
发布日期:2025-12-01
LIU Yi, DONG Wu, LU Likun, MA Qian, ZHOU Ziyi, ZHANG Erqing
Online:2025-12-01
Published:2025-12-01
摘要: 光场图像在采集、压缩、传输、重建和显示过程中易产生失真,影响用户的视觉体验。针对不同的失真类型,研究人员提出了不同的质量评价方法来准确评估光场图像的质量。现有的光场图像质量评价方法综述通常从参考信息、映射技术等角度进行分类,但这两种分类基准往往无法全面地反映光场图像在空间信息和角度信息上的独特性。对目前光场图像质量评价的研究进展进行了较为全面的总结。根据光场图像的表现形式不同,将光场图像质量评价方法分为六类,分别为子孔径图像的质量评价方法、极平面图像的质量评价方法、微透镜图像的质量评价方法、伪视频序列的质量评价方法、重聚焦图像的质量评价方法和混合提取方法,并介绍了近年来的代表性方法,总结归纳了每类方法的优势和局限性。列举了常用于质量评价的七个光场图像数据集和三个性能评价指标,并从表现形式的特点、数据集以及模型结构三个方面对不同方法的性能进行了比较与分析。从多模态、模型轻量化、大模型、人眼视觉系统和高维拓展等方面展望了光场图像质量评价方法的未来发展趋势。
刘意, 董武, 陆利坤, 马倩, 周子镱, 张二青. 光场图像质量评价综述[J]. 计算机科学与探索, 2025, 19(12): 3153-3178.
LIU Yi, DONG Wu, LU Likun, MA Qian, ZHOU Ziyi, ZHANG Erqing. Review of Light Field Image Quality Assessment[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3153-3178.
| [1] ZHOU R, JIANG G Y, ZHU L W, et al. Blind light field image quality assessment via frequency domain analysis and auxiliary learning[J]. IEEE Signal Processing Letters, 2025, 32: 711-715. [2] LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 31-42. [3] GORTLER S J, GRZESZCZUK R, SZELISKI R, et al. The lumigraph[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1996: 43-54. [4] LEVOY M, LENSCH H. Stanford??s multi-camera array[EB/OL]. (2008-02-01)[2024-08-28]. https://graphics.stanford.edu/courses/cs448a-06-winter. [5] CONTI C, SOARES L D, NUNES P. Dense light field coding: a survey[J]. IEEE Access, 2020, 8: 49244-49284. [6] ZHANG Z Y, TIAN S S, ZOU W B, et al. PVBLiF: a pseudo video-based blind quality assessment metric for light field image[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(6): 1193-1207. [7] MOUSNIER A, VURAL E, GUILLEMOT C. Lytro first generation dataset[EB/OL]. [2024-08-24]. https://www.irisa.fr/temics/demos/lightField/index.html. [8] 蒋玉英, 江梦蝶, 葛宏义, 等. 太赫兹图像超分辨率重建方法的研究进展[J]. 计算机工程与应用, 2024, 60(18): 1-16. JIANG Y Y, JIANG M D, GE H Y, et al. Research and progress on super-resolution reconstruction methods for terahertz images[J]. Computer Engineering and Applications, 2024, 60(18): 1-16. [9] YU Z R, LI F, ZHOU Z H, et al. Spatial-angular features based no-reference light field quality assessment[J]. Expert Systems with Applications, 2025, 265: 126061. [10] LIU L X, LIU B, SU C C, et al. Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment[J]. Signal Processing: Image Communication, 2017, 58: 287-299. [11] CHEN Z B, ZHOU W, LI W P. Blind stereoscopic video quality assessment: from depth perception to overall experience[J]. IEEE Transactions on Image Processing, 2018, 27(2): 721-734. [12] HUANG H L, ZENG H Q, TIAN Y, et al. Light field image quality assessment: an overview[C]//Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2020: 348-353. [13] MAHMOUDPOUR S, PAGLIARI C, SCHELKENS P. Learning-based light field imaging: an overview[J]. EURASIP Journal on Image and Video Processing, 2024(1): 12. [14] ALAMGEER S, FARIAS M C Q. A survey on visual quality assessment methods for light fields[J]. Signal Processing: Image Communication, 2023, 110: 116873. [15] SHI L K, ZHAO S Y, CHEN Z B. Belif: blind quality evaluator of light field image with tensor structure variation index[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 3781-3785. [16] SHI L K, ZHOU W, CHEN Z B, et al. No-reference light field image quality assessment based on spatial-angular measurement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 4114-4128. [17] PAN Z Y, YU M, JIANG G Y, et al. Combining tensor slice and singular value for blind light field image quality assessment[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(3): 672-687. [18] LIU Y, JIANG G Y, JIANG Z D, et al. Pseudoreference subaperture images and microlens image-based blind light field image quality measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5013515. [19] 邹卓成, 邱钧, 刘畅. 基于多视觉特征聚合的光场质量评价方法[J]. 光学学报, 2021, 41(16): 1610002. ZOU Z C, QIU J, LIU C. Light-field image quality assessment based on multiple visual feature aggregation[J]. Acta Optica Sinica, 2021, 41(16): 1610002. [20] ALAMGEER S, FARIAS M C Q. Blind visual quality assessment of light field images based on distortion maps[J]. Frontiers in Signal Processing, 2022, 2: 815058. [21] MENG C L, AN P, HUANG X P, et al. Objective quality assessment of lenslet light field image based on focus stack[J]. IEEE Transactions on Multimedia, 2022, 24: 3193-3207. [22] MENG C L, AN P, HUANG X P, et al. Image quality evaluation of light field image based on macro-pixels and focus stack[J]. Frontiers in Computational Neuroscience, 2022, 15: 768021. [23] ALAMGEER S, FARIAS M C Q. No-reference light field image quality assessment method based on a long-short term memory neural network[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2022: 1-6. [24] QU Q, CHEN X M, CHUNG Y Y, et al. LFACon: introducing anglewise attention to no-reference quality assessment in light field space[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(5): 2239-2248. [25] ALAMGEER S, FARIAS M C Q. A two-stream CNN based visual quality assessment method for light field images[J]. Multimedia Tools and Applications, 2023, 82(4): 5743-5762. [26] XIANG J J, JIANG G Y, YU M, et al. No-reference light field image quality assessment using four-dimensional sparse transform[J]. IEEE Transactions on Multimedia, 2023, 25: 457-472. [27] XIANG J J, CHEN P, DANG Y J, et al. Pseudo light field image and 4D wavelet-transform-based reduced-reference light field image quality assessment[J]. IEEE Transactions on Multimedia, 2024, 26: 929-943. [28] LIN L L, BAI S Y, QU M J, et al. Transformer-based light field geometry learning for no-reference light field image quality assessment[J]. IEEE Transactions on Broadcasting, 2024, 70(2): 597-606. [29] DU Y F, LANG W, HU X W, et al. Quality assessment of light field images based on adaptive attention in ViT[J]. Electronics, 2024, 13(15): 2985. [30] CHAI X L, SHAO F, JIANG Q P, et al. Blind quality evaluator of light field images by group-based representations and multiple plane-oriented perceptual characteristics[J]. IEEE Transactions on Multimedia, 2024, 26: 607-622. [31] ZHOU R, JIANG G Y, CUI Y L, et al. MAFBLiF: multi-scale attention feature fusion-based blind light field image quality assessment[J]. IEEE Transactions on Broadcasting, 2024, 70(4): 1266-1278. [32] ZHAO P, CHEN X M, CHUNG V, et al. ELFA-LFIQE: epipolar plane image low-level features-aware light field image quality evaluator[J]. Computers and Electrical Engineering, 2025, 123: 110078. [33] MA J, WANG J B, AN P, et al. Blind light field image quality measurement via four-stream convolutional neural network[J]. Displays, 2025, 87: 102901. [34] ZHOU W, SHI L K, CHEN Z B, et al. Tensor oriented no-reference light field image quality assessment[J]. IEEE Transactions on Image Processing, 2020, 29: 4070-4084. [35] XIANG J J, YU M, CHEN H, et al. VBLFI: visualization-based blind light field image quality assessment[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6. [36] ZHANG Z Y, TIAN S S, ZOU W B, et al. Blind quality assessment of light field image based on spatio-angular textural variation[C]//Proceedings of the 2023 IEEE International Conference on Image Processing. Piscataway: IEEE, 2023: 2385-2389. [37] 鲜晴羽, 仇文革, 王泓颖, 等. 基于卷积神经网络的隧道掌子面图像质量评价方法研究[J]. 铁道科学与工程学报, 2020, 17(3): 563-572. XIAN Q Y, QIU W G, WANG H Y, et al. Research on image quality assessment method of tunnel face based on convolutional neural network[J]. Journal of Railway Science and Engineering, 2020, 17(3): 563-572. [38] ZHANG Z Y, TIAN S S, ZOU W B, et al. EDDMF: an efficient deep discrepancy measuring framework for full-reference light field image quality assessment[J]. IEEE Transactions on Image Processing, 2023, 32: 6426-6440. [39] QU Q, CHEN X M, CHUNG V, et al. Light field image quality assessment with auxiliary learning based on depthwise and anglewise separable convolutions[J]. IEEE Transactions on Broadcasting, 2021, 67(4): 837-850. [40] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. [41] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [42] XIANG J J, DANG Y J, CHEN P, et al. Spatial-angular quality-aware representation learning for blind light field image quality assessment[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 1077-1087. [43] GUO W Z, WANG H L, KE X. Splitting the backbone: a novel hierarchical method for assessing light field image quality[J]. Optics and Lasers in Engineering, 2024, 178: 108177. [44] 王汉灵, 柯逍, 江澳鑫, 等. 基于对比性视觉-文本模型的光场图像质量评估[J]. 电子学报, 2024, 52(10): 3562-3577. WANG H L, KE X, JIANG A X, et al. Quality assessment of light field images based on contrastive visual-textual model[J]. Acta Electronica Sinica, 2024, 52(10): 3562-3577. [45] MA J, ZHANG X Y, WANG J B. Blind light field image quality assessment based on deep meta-learning[J]. Optics Letters, 2023, 48(23): 6184-6187. [46] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [47] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. [2024-08-28]. https://arxiv.org/abs/2010.11929. [48] LIN L L, QU M J, BAI S Y, et al. Feature-level contrastive learning for full-reference light field image quality assessment[J]. Journal of the Franklin Institute, 2024, 361(14): 107058. [49] ZHANG Z Y, TIAN S S, ZHANG Y H, et al. Blind perceptual quality assessment of LFI based on angular-spatial effect modeling[J]. IEEE Transactions on Broadcasting, 2024, 70(1): 290-304. [50] 韩耀辉, 王鹍, 朱友强, 等. 光子集成干涉阵列视场拼接子孔径光路设计[J]. 中国光学(中英文), 2024, 17(6): 1458-1466. HAN Y H, WANG K, ZHU Y Q, et al. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. [51] LAMICHHANE K, NERI M, BATTISTI F, et al. No-reference light field image quality assessment exploiting saliency[J]. IEEE Transactions on Broadcasting, 2023, 69(3): 790-800. [52] ALAMGEER S, FARIAS M C Q. Light field image quality assessment with dense atrous convolutions[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 2441-2445. [53] ALAMGEER S, FARIAS M C Q. Deep learning-based light field image quality assessment using frequency domain inputs[C]//Proceedings of the 2022 14th International Conference on Quality of Multimedia Experience. Piscataway: IEEE, 2022: 1-6. [54] ALAMGEER S, COSTA A H M, FARIAS M C Q. Using a diverse neural network to predict the quality of light field images[C]//Proceedings of the 2023 IEEE 25th International Workshop on Multimedia Signal Processing. Piscataway: IEEE, 2023: 1-6. [55] ZHAO P, CHEN X M, CHUNG V, et al. DeLFIQE: a low-complexity deep learning-based light field image quality evaluator[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5014811. [56] 陈纯毅, 范晓辉, 胡小娟, 等. 融合3D对极平面图像的光场角度超分辨重建[J]. 光学精密工程, 2023, 31(21): 3167-3177. CHEN C Y, FAN X H, HU X J, et al. Light-field angular super-resolution reconstruction via fusing 3D epipolar plane images[J]. Optics and Precision Engineering, 2023, 31(21): 3167-3177. [57] CUI Y L, YU M, JIANG Z D, et al. Blind light field image quality assessment by analyzing angular-spatial characteristics[J]. Digital Signal Processing, 2021, 117: 103138. [58] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752. [59] MENG C L, AN P, ZHANG Q. A lightweight light field image quality assessment method based on cross characteristics in angular and spatial domain[J]. Signal, Image and Video Processing, 2025, 19(5): 406. [60] LIU F, HOU G Q. Depth estimation from a hierarchical baseline stereo with a developed light field camera[J]. Applied Sciences, 2024, 14(2): 550. [61] XIANG J J, YU M, JIANG G Y, et al. Blind light field image quality assessment with tensor color domain and 3D shearlet transform[J]. Signal Processing, 2023, 211: 109083. [62] 王琳, 彭宗举, 张鹏, 等. 基于自适应匹配伪序列的光场图像压缩[J]. 激光杂志, 2024, 45(6): 132-137. WANG L, PENG Z J, ZHANG P, et al. Light field image compression based on adaptive matching pseudo-sequence[J]. Laser Journal, 2024, 45(6): 132-137. [63] LI F C, YE M M, SHAO F. Blind quality assessment of light field image based on view and focus stacks[J]. Journal of Visual Communication and Image Representation, 2024, 99: 104074. [64] 黄泽丰, 杨莘, 邓慧萍, 等. 基于MDLatLRR和KPCA的光场图像全聚焦融合[J]. 光子学报, 2023, 52(4): 0410004. HUANG Z F, YANG S, DENG H P, et al. Light field all-in-focus image fusion based on MDLatLRR and KPCA[J]. Acta Photonica Sinica, 2023, 52(4): 0410004. [65] XIANG J J, YU M, JIANG G Y, et al. Pseudo video and refocused images-based blind light field image quality assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(7): 2575-2590. [66] 程俊, 郁梅, 蒋刚毅. 结合视差补偿与3D数据处理的盲光场图像质量评价[J]. 光学精密工程, 2023, 31(8): 1202-1216. CHENG J, YU M, JIANG G Y. Blind light field image quality assessment combining disparity compensation with 3D data processing[J]. Optics and Precision Engineering, 2023, 31(8): 1202-1216. [67] MA J, ZHANG X Y, JIN C, et al. Light field image quality assessment using natural scene statistics and texture degradation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1696-1711. [68] LIU C, ZOU Z C, MIAO Y, et al. Light field quality assessment based on aggregation learning of multiple visual features[J]. Optics Express, 2022, 30(21): 38298-38318. [69] 王斌, 白永强, 朱仲杰, 等. 联合空角信息的无参考光场图像质量评价[J]. 光电工程, 2024, 51(9): 240139. WANG B, BAI Y Q, ZHU Z J, et al. No-reference light field image quality assessment based on joint spatial-angular information[J]. Opto-Electronic Engineering, 2024, 51(9): 240139. [70] ZHANG Z Y, TIAN S S, ZHOU J J, et al. A new benchmark database and objective metric for light field image quality evaluation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(3): 2382-2397. [71] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. [72] PAUDYAL P, OLSSON R, SJ?STR?M M, et al. SMART: a light field image quality dataset[C]//Proceedings of the 7th International Conference on Multimedia Systems. New York: ACM, 2016: 1-6. [73] PAUDYAL P, BATTISTI F, SJ?STR?M M, et al. Towards the perceptual quality evaluation of compressed light field images[J]. IEEE Transactions on Broadcasting, 2017, 63(3): 507-522. [74] SULLIVAN G J, OHM J R, HAN W J, et al. Overview of the high efficiency video coding (HEVC) standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649-1668. [75] JCT-VC - Joint Collaborative Team on Video Coding. High efficiency video coding (HEVC)[EB/OL]. [2024-08-10]. https://hevc.hhi.fraunhofer.de/. [76] LI Y, SJ?STR?M M, OLSSON R, et al. Scalable coding of plenoptic images by using a sparse set and disparities[J]. IEEE Transactions on Image Processing, 2016, 25(1): 80-91. [77] ITU-T P.910. Subjective video quality assessment methods for multimedia applications[EB/OL]. (2023-10-29)[2024-07-18]. https://www.itu.int/itu-t/recommendations/rec.aspx?rec=15697. [78] ADHIKARLA V K, VINKLER M, SUMIN D, et al. Towards a quality metric for dense light fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3720-3729. [79] TECH G, CHEN Y, MüLLER K, et al. Overview of the multiview and 3D extensions of high efficiency video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 35-49. [80] SHI L K, ZHAO S Y, ZHOU W, et al. Perceptual evaluation of light field image[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 41-45. [81] ?E?áBEK M, EBRAHIMI T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience, 2016. [82] HONAUER K, JOHANNSEN O, KONDERMANN D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of the 13th Asian Conference on Computer Vision. Cham: Springer, 2016: 19-34. [83] KALANTARI N K, WANG T C, RAMAMOORTHI R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6): 1-10. [84] WU G C, ZHAO M D, WANG L Y, et al. Light field reconstruction using deep convolutional network on EPI[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1638-1646. [85] VIOLA I, EBRAHIMI T. VALID: visual quality assessment for light field images dataset[C]//Proceedings of the 10th International Conference on Quality of Multimedia Experience. Piscataway: IEEE, 2018: 1-3. [86] VIOLA I, ?E?áBEK M, EBRAHIMI T. Comparison and evaluation of light field image coding approaches[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 1092-1106. [87] AHMAD W, OLSSON R, SJ?STR?M M. Interpreting plenoptic images as multi-view sequences for improved compression[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 4557-4561. [88] TABUS I, HELIN P, ASTOLA P. Lossy compression of lenslet images from plenoptic cameras combining sparse predictive coding and JPEG 2000[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 4567-4571. [89] ZHAO S Y, CHEN Z B. Light field image coding via linear approximation prior[C]//Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 4562-4566. [90] HUANG Z J, YU M, JIANG G Y, et al. Reconstruction distortion oriented light field image dataset for visual communication[C]//Proceedings of the 2019 International Symposium on Networks, Computers and Communications. Piscataway: IEEE, 2019: 1-5. [91] MOUSNIER A, VURAL E, GUILLEMOT C. Partial light field tomographic reconstruction from a fixed-camera focal stack[EB/OL]. [2024-08-29]. https://arxiv.org/abs/1503.01903. [92] ZHANG S, SHENG H, YANG D, et al. Micro-lens-based matching for scene recovery in lenslet cameras[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1060-1075. [93] SHAN L, AN P, MENG C L, et al. A no-reference image quality assessment metric by multiple characteristics of light field images[J]. IEEE Access, 2019, 7: 127217-127229. [94] ZIZIEN A, FLIEGEL K. LFDD: light field image dataset for performance evaluation of objective quality metrics[C]//Proceedings of the Applications of Digital Image Processing XLIII, 2020: 115102U. |
| [1] | 马倩, 董武, 曾庆涛, 张艳, 陆利坤, 周子镱. 图像重定向及客观质量评价方法综述[J]. 计算机科学与探索, 2025, 19(2): 316-333. |
| [2] | 李明悦, 晏涛, 井花花, 刘渊. 多尺度特征融合的低照度光场图像增强算法[J]. 计算机科学与探索, 2023, 17(8): 1904-1916. |
| [3] | 宋巍, 肖毅, 杜艳玲, 张明华. 双流网络的水下视频客观质量评价模型[J]. 计算机科学与探索, 2023, 17(2): 409-418. |
| [4] | 谭娅娅, 孔广黔. 基于深度学习的视频质量评价研究综述[J]. 计算机科学与探索, 2021, 15(3): 423-437. |
| [5] | 晏涛,谢柠宇,王建明,王士同,刘渊. 光场图像基线编辑方法[J]. 计算机科学与探索, 2019, 13(11): 1911-1924. |
| [6] | 胡舒童,郭碧川,王剑. 光场熵:针对光场编码的客观评价指标[J]. 计算机科学与探索, 2018, 12(9): 1465-1474. |
| [7] | 陈慧,李朝锋. 深度卷积神经网络的立体彩色图像质量评价[J]. 计算机科学与探索, 2018, 12(8): 1315-1322. |
| [8] | 桑庆兵,高双. 四元数小波变换的无参考图像质量评价[J]. 计算机科学与探索, 2017, 11(4): 633-642. |
| [9] | 桑庆兵,程大宇. 稀疏表示的无参考图像质量评价方法[J]. 计算机科学与探索, 2017, 11(1): 144-154. |
| [10] | 严大卫,桑庆兵. 多核学习纹理特征的无参考图像质量评价[J]. 计算机科学与探索, 2014, 8(12): 1517-1524. |
| [11] | 李星光,孙哲南,谭铁牛. 由粗到精的虹膜图像离焦模糊评价方法[J]. 计算机科学与探索, 2014, 8(1): 81-89. |
| [12] | 梁敏瑜,孙权森. 基于边缘梯度信息的图像质量评价方法[J]. 计算机科学与探索, 2012, 6(11): 1019-1025. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||