计算机科学与探索

• 学术研究 •    下一篇

多智能体协作驱动的审计问题定性法规推荐系统

徐超,刘子硕,周立云,朱浩然,黄佳佳   

  1. 1.南京审计大学 计算机学院,南京 211815
    2.中国石油化工集团有限公司 审计部,北京 100728

Multi-agent Collaborative Framework for Audit Case Qualification and Regulation Recommendation

XU Chao,  LIU Zishuo,  ZHOU Liyun,  ZHU Haoran,  HUANG Jiajia   

  1. 1.School of Computing, Nanjing Audit University, Nanjing 211815, China
    2.Department of Audit, China Petrochemical Corporation, Beijing 100728, China

摘要: 针对审计问题定性中多维特征解析与动态法规匹配的技术难题,提出了多智能体协作框架下的审计问题定性法规推荐系统。传统大语言模型在法规推荐任务中存在三重局限性:法律文本的语义特征与审计问题存在表征差异,动态更新的法规体系导致知识时效性不足,以及单一检索策略难以支撑复杂案例的多级推理需求。基于上述问题,构建了包含问题抽取、逻辑推理、伪例生成等专业化智能体的协同架构,通过任务分解机制将复杂审计案例解析为可并行处理的子问题空间。方法层面创新性地融合指令微调与检索增强生成技术,构建覆盖国家级、企业级和内控手册的三级法规知识库,并设计基于智能体的动态检索策略。经大量真实审计案例数据的实验验证,在国家级法规推荐任务中,系统实现30.56%的法规条款直接命中率,较ChatGPT-4(13.89%)提升116%,BERTScore与Rouge-L指标分别达71.19%与20.20%。在多级综合法规推荐任务中,命中率、BERTScore与Rouge-L分别达到63.91%、26.50%和27.80%,均超过基线模型至少15.2%。结果表明,通过智能体协同的任务分解机制可有效解耦复杂审计问题中的多维度特征,而多级知识库架构显著提高了法规推荐的准确度,为审计实务提供了可解释的法规推理路径。此外,模块化的设计支持不同司法辖区的法规库动态扩展,具有重要的工程应用价值。

关键词: 多智能体系统, 审计问题定性, 人工智能, 法规推荐, 大数据审计

Abstract: Addressing the technical challenges of multidimensional feature analysis and dynamic regulation alignment in audit case qualification, this study develops an audit regulation recommendation system based on multi-agent collaboration. Conventional large language models exhibit three limitations in regulatory recommendation tasks: semantic discrepancies between legal texts and audit problem representations, insufficient knowledge currency due to dynamic regulatory updates, and inadequate multi-level reasoning capabilities under single retrieval strategies. To resolve these issues, a collaborative architecture is proposed, integrating specialized agents for problem extraction, logical reasoning, and pseudo-case generation. The task decomposition mechanism parses complex audit cases into parallelizable subproblem spaces. Methodologically, the framework innovatively combines instruction fine-tuning with Retrieval-Augmented Generation (Retrieval-Augmented Generation, RAG) technology, establishing a three-tier regulatory knowledge base covering national statutes, organizational policies, and internal control protocols. A dynamic agent-based retrieval strategy is incorporated to enhance precision. Experimental results demonstrate 30.56% direct clause matching accuracy in national regulation recommendations, outperforming ChatGPT-4 (13.89%) by 116%. Semantic evaluation metrics achieve 71.19% BERTScore and 20.20% Rouge-L. For multi-level regulatory recommendations, the system attains 63.91% accuracy, 26.50% BERTScore, and 27.80% Rouge-L, which exceeded the baseline model by at least 15.2%. The findings reveal that task decomposition through agent collaboration effectively disentangles multidimensional audit features, while the hierarchical knowledge architecture improves recommendation accuracy and provides interpretable regulatory reasoning paths. The modular design supports dynamic expansion of jurisdiction-specific regulation databases, demonstrating significant engineering applicability.

Key words: Multi-agent Systems, Audit Case Qualification, Artificial Intelligence, Regulation Recommendation, Big Data Audit