计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (9): 1101-1112.DOI: 10.3778/j.issn.1673-9418.1403055
严 晨,李凡长+,邹 鹏
YAN Chen, LI Fanzhang+, ZOU Peng
摘要: 李群机器学习作为一种新的学习范式已被学术界广泛关注。根据李群的连通性质,将具有不同类别特征的研究对象映射到多连通李群空间,并从各个单连通李群空间上连线的同伦等价出发,运用覆盖的思想寻找对应不同类别的最优道路等价表示,从而用多连通李群的多值表示来呈现图像的类别信息,因此提出了多连通李群覆盖学习算法。在MPEG7_CE-Shape01_Part_B图像库的图像和MNIST手写体数字图像上进行了实验验证,结果表明与两种基于李群均值的学习算法相比,多连通李群覆盖学习算法具有较好的分类效果。