计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (5): 802-813.DOI: 10.3778/j.issn.1673-9418.1601005
董 琪+,王士同
DONG Qi+, WANG Shitong
摘要: 基于稀疏表示的隐子空间聚类(latent subspace clustering,LSC)算法,相对于传统的子空间聚类算法,具有更快的聚类速度,使其适用于更大的数据集,但是其存在字典训练具有随机性,占用内存过多等缺陷。参照LC-KSVD字典训练算法的思想,通过将一部分信号的标签信息添加进字典训练阶段,以此提高了字典的判别性,进而提出了聚类精度更好的ILSC(improved LSC)算法。但相比于LSC算法,ILSC算法在字典训练阶段的耗时却大幅增加,针对此缺陷,参照增量字典训练的思想,提出了ILSC算法的增量式聚类算法I2LSC(incremental ILSC),在确保聚类精度、NMI(normalized mutual information)、RI(Rand index)值高于LSC且与ILSC相当的同时,较之ILSC具有更快的运行速度。