计算机科学与探索 ›› 2019, Vol. 13 ›› Issue (1): 158-168.DOI: 10.3778/j.issn.1673-9418.1806020
马 忱1,姜高霞1,王文剑2+
MA Chen1, JIANG Gaoxia1, WANG Wenjian2+
摘要: 函数型数据将观测到的数据作为一个整体,关注数据自身的内在结构而不只是数据的呈现形式,相较于传统的数据包含了更多的信息,因此对函数型数据的分析和研究具有重要的价值。在函数型数据分析中,特征选择也是一个需要解决的问题。提出了一种面向函数型数据的动态互信息(dynamic mutual information,DMI)特征选择方法,充分考虑数据的内在特征,运用互信息将特征进行排序和动态选择,不仅可以获得稳定的特征子集,而且充分考虑了样本在特征选择中的作用,较好地避免了信息的冗余。进一步提出了一种动态条件互信息(dynamic conditional mutual information,DCMI)特征选择方法,在动态特征选择的过程中,考虑到已选特征会对后续的特征选择产生影响,引入条件互信息,将已选特征对待选特征的影响进行量化表示,更恰当地描述特征与特征集合之间的关系。在UCR数据集上的实验结果表明,DMI方法和DCMI方法进行特征选择得到的特征子集规模小且分类精度高。