计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (12): 1981-1994.DOI: 10.3778/j.issn.1673-9418.2003061

• 综述·探索 • 上一篇    下一篇

AUV路径规划算法研究现状与展望

郭银景,孟庆良,孔芳,吕文红   

  1. 1. 山东科技大学 电子信息工程学院,山东 青岛 266590
    2. 青岛智海牧洋科技有限公司,山东 青岛 266590
    3. 山东科技大学 交通学院,山东 青岛 266590
  • 出版日期:2020-12-01 发布日期:2020-12-11

Research Status and Prospect of AUV Path Planning Algorithms

GUO Yinjing, MENG Qingliang, KONG Fang, LYU Wenhong   

  1. 1. College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
    2. Qingdao Zhihai Muyang Technology Co., Ltd., Qingdao, Shandong 266590, China
    3. College of Transportation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
  • Online:2020-12-01 Published:2020-12-11

摘要:

路径规划算法是自主水下航行器(AUV)完成水下自主巡航的核心算法之一。分别综述了基于环境建模和路径搜索两类AUV路径规划算法。阐述了栅格法、可视图法和维诺图法等环境建模方法的国内外研究现状,并指出了它们的优缺点。对前人在人工势场法、快速步进法和A*算法等传统路径搜索算法方面的研究成果进行分析,并与近期粒子群优化算法、蚁群算法、遗传算法和人工神经网络算法等智能仿生学路径搜索算法进行比较。分析发现,面对复杂水下环境因素的影响,提高算法在海流、复杂障碍物等三维海洋环境中的实用性,从而实现AUV的高效避障和节约能耗是路径规划算法研究的重点。最后对AUV路径规划算法在智能化发展、融合、多AUV协作以及向广域探测的AUV远程化方向发展等方面的研究趋势进行展望。

关键词: 自主水下航行器(AUV), 环境建模方法, 路径搜索算法

Abstract:

Path planning algorithm is one of the core algorithms for autonomous underwater vehicle (AUV) to complete autonomous underwater cruise. In this paper, two kinds of AUV path planning algorithms based on environment modeling and path searching are reviewed. The domestic and foreign research status of environmental modeling methods such as grid method, visibility graph method and Voronoi diagram method is expounded, and their advantages and disadvantages are pointed out. In addition, the research results of predecessors in artificial potential field algorithm, fast marching algorithm, A* algorithm and other traditional path search algorithms are analyzed, and compared with the recent intelligent bionics path search algorithms such as particle swarm optimization algorithm, ant colony algorithm, genetic algorithm and artificial neural network algorithm. It is found that, in the face of the influence of complex underwater environment factors, improving the practicability of the algorithms in three-dimensional ocean environment such as ocean currents and complex obstacles, thus achieving AUV's efficient obstacle avoidance and energy saving is the focus of path planning algorithm research. Finally, the research trends of AUV path planning algorithm in intelligent development, fusion and multi-AUV collaboration, and the development of AUV remoteness for wide-area detection are prospected.

Key words: autonomous underwater vehicle (AUV), environmental modeling method, path search algorithm