[1] Bonin-Font F, Burguera A, Lisani J L. Visual discrimination and large area mapping of posidonia oceanica using a light-weight AUV[J]. IEEE Access, 2017, 5: 24479-24494.
[2] Akács B, Dóczi R, Süt? B, et al. Extending AUV response robot capabilities to solve standardized test methods[J]. Acta Polytechnica Hungarica, 2016, 13(1): 157-170.
[3] McColgan J, McGookin E W, Mazlan A N A. A low fidelity mathematical model of a biomimetic AUV for multivehicle cooperation[C]//Proceedings of the OCEANS 2015, Genova, May 18-21, 2015. Piscataway: IEEE, 2015: 1-10.
[4] Chen C. Unmanned boat path planning based on improved grid method and artifitial potential field method[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018.陈呈. 基于改进栅格法和人工势场法的无人艇路径规划研究[D]. 镇江: 江苏科技大学, 2018.
[5] Lu D Y, Cui R X, Wang P. Energy efficient path planning of autonomous underwater vehicles for environment modeling[C]//Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, Beijing, Sep 28-29, 2014. Piscataway: IEEE, 2014: 1-6.
[6] Li L, Zhu D Q, Sun B, et al. The 3-D map building of AUV based on DS information fusion[C]//Proceedings of the 33rd Chinese Control Conference, Nanjing, Jul 28-30, 2014. Pisca-taway: IEEE, 2014: 8639-8644.
[7] Cao X, Zhu D Q, Yang S X. Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater env-ironments[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 27(11): 2364-2374.
[8] Tanakitkorn K, Wilson P A, Turnock S R, et al. Grid-based GA path planning with improved cost function for an over-actuated hover-capable AUV[C]//Proceedings of the 2014 IEEE/OES Autonomous Underwater Vehicles, Oxford, Oct 6-9, 2014. Piscataway: IEEE, 2014: 1-8.
[9] Zhu T T, Zhu D Q, Yan M Z. Multiple underwater target search path planning based on GBNN[C]//LNCS 11742: Pro-ceedings of the 12th International Conference on Intelligent Robotics and Applications, Shenyang, Aug 8-11, 2019. Berlin, Heidelberg: Springer, 2019: 225-232.
[10] Li J H, Kang H, Park G, et al. Real time path planning of underwater robots in unknown environment[C]//Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization, Prague, May 20-22, 2017. Piscataway: IEEE, 2018: 312-318.
[11] Gal O. Unified trajectory planning algorithms for autonomous underwater vehicle navigation[J]. ISRN Robotics, 2013: 1-6.
[12] Xidias E, Zissis D. Real time autonomous maritime navigation using dynamic visibility graphs[C]//Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Porto, Nov 6-9, 2018. Piscataway: IEEE, 2018: 1-6.
[13] Kim J, Kim M, Kim D. Variants of the quantized visibility graph for efficient path planning[J]. Advanced Robotics, 2011, 25(18): 2341-2360.
[14] Marino A, Antonelli G. Experiments on sampling patrolling with two autonomous underwater vehicles[J]. Robotics and Autonomous Systems, 2015, 67: 61-71.
[15] Candeloro M, Lekkas A M, S?erensen A J, et al. Continuous curvature path planning using Voronoi diagrams and fermat??s spirals[J]. IFAC Proceedings, 2013, 46(33): 132-137.
[16] Dong D Y, He B, Liu Y, et al. A novel path planning method based on extreme learning machine for autonomous underwater vehicle[C]//Proceedings of the OCEANS 2015, Washington, Oct 19-22, 2015. Piscataway: IEEE, 2015: 1-7.
[17] Grefstad ?, Schj?lberg I. Navigation and collision avoidance of underwater vehicles using sonar data[C]//Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Work-shop, Porto, Nov 6-9, 2018. Piscataway: IEEE, 2018: 1-6.
[18] Saravanakumar S, Asokan T. Waypoint guidance based planar path following and obstacle avoidance of autonomous under-water vehicle[C]//Proceedings of the 8th International Con-ference on Informatics in Control, Automation and Robotics, Noordwijkerhout, Jul 28-31, 2011. SciTePress, 2011: 191-198.
[19] Subramanian S, George T, Thondiyath A. Obstacle avoidance using multi-point potential field approach for an underactuated flat-fish type AUV in dynamic environment[C]//Proceedings of the 2012 International Conference on Intelligent Robotics, Automation, and Manufacturing, Malaysia, Nov 28-30, 2012. Berlin, Heidelberg: Springer, 2012: 20-27.
[20] Saravanakumar S, Asokan T. Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space[J]. Intelligent Service Robotics, 2013, 6(4): 211-224.
[21] Yan X F, Gu F, Song C, et al. Dynamic formation control for autonomous underwater vehicles[J]. Journal of Central South University, 2014, 21(1): 113-123.
[22] Zhu D Q, Cheng C L, Sun B. An integrated AUV path planning algorithm with ocean current and dynamic obstacles[J]. International Journal of Robotics and Automation, 2016, 31(5): 382-389.
[23] Cheng Z, Zhang Z A, Li J Z, et al. Mobile robots path planning based on improved artificial potential field[J]. Computer Engineering and Applications, 2019, 55(23): 29-34.程志, 张志安, 李金芝, 等. 改进人工势场法的移动机器人路径规划[J]. 计算机工程与应用, 2019, 55(23): 29-34.
[24] Song J, Hao C, Su J C. Path planning for unmanned surface vehicle based on predictive artificial potential field[J]. International Journal of Advanced Robotic Systems, 2020,17(2): 1-13.
[25] Pêtrès C, Pailhas Y, Petillot Y, et al. Underwater path planning using fast marching algorithms[C]//Proceedings of the Europe Oceans 2005, Brest, Jun 20-23, 2005. Piscataway: IEEE, 2005: 814-819.
[26] Yu H, Wang Y J. Multi-objective AUV path planning in large complex battlefield environments[C]//Proceedings of the 7th International Symposium on Computational Intelligence and Design, Hangzhou, Dec 13-14, 2014. Piscataway: IEEE, 2014: 345-348.
[27] Yu H, Shen A W, Su Y S. Continuous motion planning in complex and dynamic underwater environments[J]. Intern-ational Journal of Robotics & Automation, 2015, 30(2): 192-204.
[28] Song R, Liu Y C, Richard B. A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment[J]. Ocean Engineering, 2017, 129: 301-317.
[29] Li J H, Lee M J, Park S H, et al. Real time path planning for a class of torpedo-type AUVs in unknown environment[C]//Proceedings of the 2012 IEEE/OES Autonomous Under-water Vehicles, Southampton, Sep 24-27, 2012. Piscataway: IEEE, 2012: 1-6.
[30] Chen S, Liu C W, Huang Z P, et al. Global path planning for AUV based on sparse A* search algorithm[J]. Torpedo Technology, 2012, 20(4): 271-275.陈实, 刘纯武, 黄芝平, 等. 基于稀疏A*算法的AUV全局路径规划[J]. 鱼雷技术, 2012, 20(4): 271-275.
[31] Zhang H H, Liming G, Tao C, et al. Global path planning methods of UUV in coastal environment[C]//Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, Aug 7-10, 2016. Piscataway: IEEE, 2016: 1018-1023.
[32] Wu P, Sang C J, Lu Z H, et al. Research on mobile robot path planning based on improved A* algorithm[J]. Computer Engineering and Applications, 2019, 55(21): 227-233. 吴鹏, 桑成军, 陆忠华, 等. 基于改进A*算法的移动机 器人路径规划研究[J]. 计算机工程与应用, 2019, 55(21): 227-233.
[33] Yang L, Qi J T, Xiao J Z, et al. A literature review of UAV 3D path planning[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, Jun 29-Jul 4, 2014. Piscataway: IEEE, 2014: 2376-2381.
[34] Xue M, Xu H C, Wang S. Path planning of unmanned vehicle based on particle swarm optimization algorithm[J].China Science and Technology Information, 2018(24): 69-70.薛敏, 徐海成, 王硕. 基于粒子群优化算法的无人艇路径规划[J]. 中国科技信息, 2018(24): 69-70.
[35] Sun J, Liu X. Path plan of unmanned underwater vehicle using particle swarm optimization[C]//Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering, Nanjing, Jun 19-20, 2015. Atlantis Press, 2015: 1764-1767.
[36] Zhuang Y F, Sharma S, Subudhi B, et al. Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm[J]. Ocean Engineering, 2016, 127: 190-199.
[37] Yan Z P, Li J Y, Zou J J, et al. A hybrid PSO-WG algorithm for AUV path planning in unknown oceanic environment[C]//Proceedings of the 8th International Conference on Und-erwater System Technology: Theory and Applications, Wuhan, Dec 1-3, 2018. Piscataway: IEEE, 2018: 1-6.
[38] Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Jun 19-23, 2004. Piscataway: IEEE, 2004: 325-331.
[39] Lim H S, Fan S S, Chin C K H, et al. Constrained path planning of autonomous underwater vehicle using selectively-hybridized particle swarm optimization algorithms[J]. IFAC- PapersOnLine, 2019, 52(21): 315-322.
[40] Guo X H, Ji M J, Zhang W D, et al. Improved QPSO algorithm for dynamic path planning of autonomous underwater vehicle in variable ocean current environment[J/OL]. Systems Engin-eering-Theory & Practice(2020-04-09)[2020-06-20]. http://kns.cnki.net/kcms/detail/11.2267.N.20200408.2032.002.html.郭兴海, 计明军, 张卫丹, 等. 可变洋流环境中自主水下航行器动态路径规划的改进QPSO算法[J/OL]. 系统工程理论与实践(2020-04-09)[2020-06-20]. http://kns.cnki.net/kcms/detail/11.2267.N.20200408.2032.002.html.
[41] Wang H J, Xiong W. Research on global path planning based on ant colony optimization for AUV[J]. Journal of Marine Science and Application, 2009, 8(1): 58-64.
[42] Wang P, Meng P, Ning T F. Path planning based on hybrid adaptive ant colony algorithm for AUV[C]//Proceedings of the 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science, Guilin, Oct 19-22, 2012. Piscataway: IEEE, 2012: 157-160.
[43] Zhang G L, Jia H M. Global path planning of AUV based on improved ant colony optimization algorithm[C]//Pro-ceedings of the 2012 IEEE International Conference on Aut-omation and Logistics, Zhengzhou, Aug 15-17, 2012. Pis-cataway: IEEE, 2012: 606-610.
[44] Zhang G L, Jia H M. 3D path planning of AUV based on improved ant colony optimization[C]//Proceedings of the 32nd Chinese Control Conference, Xi’an, Jul 26-28, 2013. Piscataway: IEEE, 2013: 5017-5022.
[45] Pan X, Wu X S, Hou X G, et al. Global path planning based on genetic-ant hybrid algorithm for AUV[J]. Journal of Hua-zhong University of Science and Technology (Nature Science Edition), 2017, 45(5): 45-49.潘昕, 吴旭升, 侯新国, 等. 基于遗传蚂蚁混合算法的AUV全局路径规划[J]. 华中科技大学学报(自然科学版), 2017, 45(5): 45-49.
[46] Liu G J, Liu P, Mu W L, et al. A path optimization algorithm for AUV using an improved ant colony algorithm with optimal energy consumption[J]. Journal of Xi??an Jiaotong University, 2016, 50(10): 93-98.
[47] Yuan W H, You X M, Liu S. Dual-population ant colony algorithm on dynamic learning mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1239-1250.袁汪凰, 游晓明, 刘升. 动态学习机制的双种群蚁群算法[J]. 计算机科学与探索, 2019, 13(7): 1239-1250.
[48] Zhang N N, Jiang W G, Dou G. Research on autonomous underwater vehicle 3D path planning based on improved ant colony algorithm[J]. Computer Engineering and Applications, 2019, 55(11): 265-270. 张楠楠, 姜文刚, 窦刚. 改进蚁群算法在AUV三维路径规划中的研究[J]. 计算机工程与应用, 2019, 55(11): 265-270.
[49] Li P Y. Multi-objective path planning of unmanned aerial vehicle based on genetic algorithm[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(1): 68-70.李平阳. 基于遗传算法的无人机多目标路径规划[J]. 农业装备与车辆工程, 2019, 57(1): 68-70.
[50] Khan F A, Khan S A, Turgut D, et al. Optimizing resurfacing schedules to maximize value of information in UWSNs[C]//Proceedings of the 2016 IEEE Global Communications Con-ference, Washington, Dec 4-8, 2016. Piscataway: IEEE, 2016: 1-5.
[51] Yu W Z, She H Y, Ouyang Z L. Path planning of unmanned surface vehicle based on variable mesh improved genetic algorithm[J]. Navigation of China, 2018, 41(4): 101-105.余文曌, 佘航宇, 欧阳子路. 基于弹性网格的改进遗传算法在无人艇路径规划中的研究[J]. 中国航海, 2018, 41(4):101-105.
[52] Ataei M, Yousefi-Koma A. Three-dimensional optimal path planning for waypoint guidance of an autonomous under-water vehicle[J]. Robotics and Autonomous Systems, 2015, 67: 23-32.
[53] Zhang L. Research on fuzzy control of underwater vehicle path following based on genetic algorithm optimization[D].Hangzhou: Zhejiang University, 2017.张磊. 基于遗传算法优化的水下机器人路径跟踪模糊控制技术研究[D]. 杭州: 浙江大学, 2017.
[54] Yan S K, Pan F. Research on route planning of AUV based on genetic algorithms[C]//Proceedings of the 2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence, Xi??an, Nov 22-24, 2019. Piscataway: IEEE, 2019: 184-187.
[55] He G Q, Zhu Y F, Zhang C R. Research of 3D flight path planning of UAV based on genetic algorithm[J]. Value Eng-ineering, 2020, 39(7): 215-218.何光勤, 朱一飞, 张才然. 基于遗传算法的无人机三维航迹规划研究[J]. 价值工程, 2020, 39(7): 215-218.
[56] Yang X S. Multi-objective firefly algorithm for continuous optimization[J]. Engineering with Computers, 2013, 29(2):175-184.
[57] Li L N, Guo Y Q, Zhang X D, et al. Path planning algorithm for robot based on firefly algorithm combined with artificial potential field method[J]. Computer Engineering and App-lications, 2018, 54(20): 104-109.李丽娜, 郭永强, 张晓东, 等. 萤火虫算法结合人工势场法的机器人路径规划[J]. 计算机工程与应用, 2018, 54(20):104-109.
[58] Dong J. Study on firefly algorithm and its application in path planning of underwater vehicles[D]. Harbin: Harbin Engineering University, 2013.董静. 萤火虫算法研究及其在水下潜器路径规划中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[59] Liu C, Zhao Y X, Gao F, et al. Three-dimensional path planning method for autonomous underwater vehicle based on modified firefly algorithm[J]. Mathematical Problems in Engineering, 2015(11): 1-10.
[60] Li F L, Chen S, Fan X J, et al. Path planning based on firefly algorithm in dynamic unknown environment[J]. Automation & Instrumentation, 2019, 34(6): 53-58.李凤玲, 陈珊, 范兴江, 等. 基于萤火虫算法动态未知环境的路径规划[J]. 自动化与仪表, 2019, 34(6): 53-58.
[61] Wu H S, Zhang F M, Wu L S. New swarm intelligence algorithm—wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438.吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法——狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.
[62] Shen J, Shi J, Xiong L. A route planning method for underwater terrain aided positioning based on gray wolf optimization algorithm[C]//LNCS 9937: Proceedings of the 17th Inter-national Conference on Intelligent Data Engineering and Automated Learning, Yangzhou, Oct 12-14, 2016. Berlin, Heidelberg: Springer, 2016: 126-133.
[63] Zhang L Y, Zhang L, Liu S, et al. Three-dimensional under-water path planning based on modified wolf pack algorithm[J]. IEEE Access, 2017, 5: 22783-22795.
[64] Wang Y X, Chen M Y, Cheng T L, et al. Research of improved wolf pack algorithm based on differential evolution[J]. Application Research of Computers, 2019, 36(8): 2305-2310.王盈祥, 陈民铀, 程庭莉, 等. 基于差分进化的改进狼群算法研究[J]. 计算机应用研究, 2019, 36(8): 2305-2310.
[65] Panda M, Das B, Pati B B. A hybrid approach for path planning of multiple AUVs[C]//Proceedings of the Innovation in Ele-ctrical Power Engineering, Communication, and Computing Technology, Singapore, Sep 24, 2020. Berlin, Heidelberg: Springer, 2020: 327-338.
[66] Zhu D Q, Lv R F, Cao X, et al. Multi-AUV hunting algorithm based on bio-inspired neural network in unknown environ-ments[J]. International Journal of Advanced Robotic Systems, 2015, 12(11): 166.
[67] Ni J J, Wu L Y, Shi P F, et al. A dynamic bioinspired neural network based real-time path planning method for autonomous underwater vehicles[J]. Computational Intelligence and Neuro-science, 2017: 1-16.
[68] Ni J J, Wu L Y, Wang S H, et al. 3D real-time path planning for AUV based on improved bio-inspired neural network[C]//Proceedings of the 2016 IEEE International Conference on Consumer Electronics, Taiwan, China, May 27-29, 2016. Piscataway: IEEE, 2016: 95-96.
[69] Cao X, Peng J. A potential field bio-inspired neural network control algorithm for AUV path planning[C]//Proceedings of the 2018 IEEE International Conference on Information and Automation, Wuyishan, Aug 11-13, 2018. Piscataway: IEEE, 2018: 1427-1432.
[70] Zhu D Q, Sun B, Li L. Algorithm for AUV??s 3-D path planning and safe obstacle avoidance based on biological inspired model[J]. Control and Decision, 2015, 30(5): 798-806.朱大奇, 孙兵, 李利. 基于生物启发模型的AUV三维自主路径规划与安全避障算法[J]. 控制与决策, 2015, 30(5):798-806.
[71] Zhu D Q, Qu Y, Yang S X. Multi-AUV SOM task allocation algorithm considering initial orientation and ocean current environment[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 330-341.
[72] Subramani D N, Wei Q J, Lermusiaux P F J. Stochastic time-optimal path-planning in uncertain strong and dynamic flows[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333: 218-237.
[73] Carreras M, Hernández J D, Vidal E, et al. Sparus II AUV—a hovering vehicle for seabed inspection[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 344-355.
[74] Gan W Y, Zhu D Q. Complete coverage belief function path planning algorithm of autonomous underwater vehicle based on behavior strategy[J]. Journal of System Simulation, 2018, 30(5): 1857-1868.甘文洋, 朱大奇. 基于行为策略的AUV全覆盖信度函数路径规划算法[J]. 系统仿真学报, 2018, 30(5): 1857-1868. |