[1] VELASCO M X, KOSTI A, PENALVA L O F, et al. The diverse roles of RNA-binding proteins in glioma development[M]//ROM?O L. The mRNA Metabolism in Human Disease. Berlin, Heidelberg: Springer, 2019.
[2] LIM G H, ZHU S F, ZHANG K, et al. The analogous and opposing roles of double-stranded RNA-binding proteins in bacterial resistance[J]. Journal of Experimental Botany, 2019, 70(5): 1627-1638.
[3] PEREIRA B, BILLAUD M, ALMEIDA R. RNA-binding pro-teins in cancer: old players and new actors[J]. Trends in Cancer, 2017, 3(7): 506-528.
[4] HAN Y, YANG J Z, QIAN X Y, et al. DriverML: a machine learning algorithm for identifying driver genes in cancer se-quencing studies[J]. Nucleic Acids Research, 2019, 47(8): e45.
[5] FERRE F, COLANTONI A, HELMER-CITTERICH M. Revea-ling protein-lncRNA interaction[J]. Briefings in Bioinfor-matics, 2017, 17(1): 106-116.
[6] MATICZKA D, LANGE S J, COSTA F, et al. GraphProt: modeling binding preferences of RNA-binding proteins[J]. Genome Biology, 2014, 15: R17.
[7] CORRADO G, TEBALDI T, COSTA F, et al. RNAcommen-der: genome-wide recommendation of RNA-protein interac-tions[J]. Bioinformatics, 2016, 32(23): 3627-3634.
[8] ZHANG S W, WANG Y, ZHANG X X, et al. Prediction of the RBP binding sites on lncRNAs using the high-order nuc-leotide encoding convolutional neural[J]. Analytical Bioche-mistry, 2019, 583: 113364.
[9] HUANG D S, YU H J. Normalized feature vectors: a novel alignment-free sequence comparison method based on the numbers of adjacent amino acids[J]. IEEE/ACM Transac-tions on Computational Biology & Bioinformatics, 2013, 10(2): 457-467.
[10] ADJEROH D, ALLAGA M, TAN J, et al. Feature-based and string-based models for predicting RNA-protein interac-tion[J]. Molecules, 2018, 23(3): 697.
[11] PAN X Y, FAN Y X, JIA J, et al. Identifying RNA-binding proteins using multi-label deep learning[J]. Science China Information Sciences, 2019, 62(1): 213-215.
[12] MA W T. The scenario on the origin of translation in the RNA world: in principle of replication parsimony[J]. Biology Direct, 2010, 5(1): 389-397.
[13] FABIAN H, YANG S F, YUICHI S, et al. Codon bias confers stability to human mRNAs[J]. EMBO Reports, 2019, 20(11): e48220.
[14] DONG G M, ZHANG L R, ZHANG L H. Solid-phase syn-thesis of dipeptide-conjugated nucleosides and their interaction with RNA[J]. Helvetica Chimica Acta, 2010, 86(10): 3516-3524.
[15] HAN H, FULCHER J M, DANDEY V P, et al. Structure of Vps4 with circular peptides and implications for translocation of two polypeptide chains by AAA+ATPases[J]. Elife, 2019, 8: e44071.
[16] NEKRASOV A N, ALEKSEEVA L G, POGOSYAN R А, et al. A minimum set of stable blocks for rational design of polypeptide chains[J]. Biochimie, 2019, 160: 88-92.
[17] FENG P M, CHE W, LIN H. Identifying antioxidant proteins by using optimal dipeptide compositions[J]. Interdisciplinary Sciences Computational Life Sciences, 2016, 8(2): 186-191.
[18] PAN X Y, SHEN H B. Learning distributed representations of RNA sequences and its application for predicting RNA-protein binding sites with a convolutional neural network[J]. Neurocomputing, 2018, 305: 51-58.
[19] FU Y X, LU T L, MA Z L. CNN malicious code detection technology based on One-Hot[J]. Computer Applications and Software, 2020, 37(1): 304-308.
傅依娴, 芦天亮, 马泽良. 基于One-Hot的CNN恶意代码检测技术[J]. 计算机应用与软件, 2020, 37(1): 304-308.
[20] SHARMA A K, CHAURASIA S, SRIVASTAVA D K. Sen-timental short sentences classification by using CNN deep learning model with fine tuned Word2Vec[J]. Procedia Com-puter Science, 2020, 167: 1139-1147.
[21] CHENG Q Q, WAN L. Application research of BiLSTM in cross-site scripting detection[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(8): 1338-1347.
程琪芩, 万良. BiLSTM在跨站脚本检测中的应用研究[J]. 计算机科学与探索, 2020, 14(8): 1338-1347.
[22] JATNIKA D, BIJAKSANA M A, SURYANI A A. Word2Vec model analysis for semantic similarities in English words[J]. Procedia Computer Science, 2019, 157: 160-167.
[23] KOSEMEN C, BIRNAT D. Multi-label classification of line chart images using convolutional neural networks[J]. SN Applied Sciences, 2020, 2: 1250.
[24] BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[25] SHAN J C, HOU C P, TAO H, et al. Co-learning binary classifiers for LP-based multi-label classification[J]. Cog-nitive Systems Research, 2019, 55: 146-152.
[26] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[C]//LNCS 5782: Pro-ceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, Bled, Sep 7-11, 2009. Berlin, Heidelberg: Springer, 2009: 254-269.
[27] SCHAPIRE R E, SINGER Y. BoosTexter: a Boosting-based system for text categorization[J]. Machine Learning, 2000, 39: 135-168.
[28] DOQUIRE G, VERLEYSEN M. Mutual information-based feature selection for multilabel classification[J]. Neurocom-puting, 2013, 122: 148-155.
[29] ZHANG K M, PAN X Y, YANG Y, et al. CRIP: predicting circRNA-RBP interaction sites using a codon-based encoding and hybrid deep neural networks[J]. RNA, 2019, 25(12): 1604-1615.
[30] WORSHAM J, KALITA J. Multi-task learning for natural language processing in the 2020s: where are we going?[J]. Pattern Recognition Letters, 2020, 136: 120-126.
[31] BUDACH S, MARSICO A. Pysster: classification of biolo-gical sequences by learning sequence and structure motifs with convolutional neural networks[J]. Bioinformatics, 2018, 34(17): 3035-3037.
[32] LIU G Z, LI J B, REN D D, et al. Single image dehazing method based on densely connected dilated convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 185-194.
刘广洲, 李金宝, 任东东, 等. 密集连接扩张卷积神经网络的单幅图像去雾[J]. 计算机科学与探索, 2021, 15(1): 185-194.
[33] GAN C Q, WANG L, ZHANG Z F. Multi-entity sentiment analysis using self-attention based hierarchical dilated convo-lutional neural network[J]. Future Generation Computer Systems, 2020, 112: 116-125.
[34] DASSI E, RE A, LEO S, et al. AURA 2: empowering dis-covery of post-transcriptional networks[J]. Translation, 2014, 2(1): e27738.
[35] HOSSAIN A, BEYENE J. Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data[J]. Statistical Applications in Genetics & Molecular Biology, 2013, 12(6): 743-755. |