[1] CHOWDHURY M, ZAHARIA M, MA J, et al. Managing data transfers in computer clusters with orchestra[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 98-109.
[2] AL-FARES M, LOUKISSAS A, VAHDAT A. A scalable, commodity data center network architecture[C]//Proceedings of the ACM SIGCOMM 2008 Conference on Applications, Seattle, Aug 17-22, 2008. New York: ACM, 2008: 63-74.
[3] CHOWDHURY M, STOICA I. Coflow: a networking abstraction for cluster applications[C]//Proceedings of the 11th ACM Workshop on Hot Topics in Networks, Redmond, Oct 29-30, 2012. New York: ACM, 2012: 31-36.
[4] CHOWDHURY M, STOICA I. Efficient Coflow scheduling without prior knowledge[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(5): 393-406.
[5] WANG S, ZHANG J, HUANG T, et al. Leveraging multiple Coflow attributes for information-agnostic Coflow scheduling [C]//Proceedings of the 2017 IEEE International Conference on Communications, Paris, May 21-25, 2017. Piscataway: IEEE, 2017: 1-6.
[6] JAJOO A, HU Y C, LIN X. Your Coflow has many flows: sampling them for fun and speed[C]//Proceedings of the 2019 USENIX Annual Technical Conference, Renton, Jul 10-12, 2019. Berkeley: USENIX Association, 2019: 833-848.
[7] CHOWDHURY M, ZHONG Y, STOICA I. Efficient coflow scheduling with varys[J]. ACM SIGCOMM Computer Communication Review, 2014, 44(4): 443-454.
[8] AGARWAL S, RAJAKRISHNAN S, NARAYAN A, et al. Sincronia: near-optimal network design for coflows[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Aug 20-25, 2018. New York: ACM, 2018: 16-29.
[9] HU Z Y, LI D S, LI Z Y. Recent advances in datacenter flow scheduling[J]. Journal of Computer Research and Development, 2018, 55(9): 96-106.
胡智尧, 李东升, 李紫阳. 数据中心网络流调度技术前沿进展[J]. 计算机研究与发展, 2018, 55(9): 96-106.
[10] LIU S, HUANG J, ZHOU Y, et al. Task-aware TCP in data center networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 389-404.
[11] POUPART P, CHEN Z, JAINI P, et al. Online flow size prediction for improved network routing[C]//Proceedings of the IEEE 24th International Conference on Network Protocols, Singapore, Nov 8-11, 2016. Washington: IEEE Computer Society, 2016: 1-6.
[12] DUKI? V, JYOTHI S A, KARLA? B, et al. Is advance knowledge of flow sizes a plausible assumption?[C]//Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation, Boston, Feb 26-28, 2019. Berkeley: USENIX Association, 2019: 565-580.
[13] YE K, ANTON FEENSTRA K, HERINGA J, et al. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a machine-learning approach for feature weighting[J]. Bioinformatics, 2007, 24(1): 18-25.
[14] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[J]. Neural networks, 2004, 2: 985-990.
[15] ZHANG F P, CHEN L, ZHANG J J. Measurement and performance bottleneck analysis method for large-scale complex networks[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(2): 262-270.
张飞朋, 陈琳, 张京京. 面向大规模复杂网络测量和性能瓶颈分析方法[J]. 计算机科学与探索, 2017, 11(2): 262-270.
[16] WU X, KUMAR V, QUINLAN J R, et al. Top 10 algorithms in data mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37.
[17] CHEN T, GUESTRIN C. Xgboost: a scalable tree Boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 785-794.
[18] Coflow-Benchmark[EB/OL]. (2015-08-06)[2020-01-06]. https://github.com/Coflow/Coflow-benchmark.
[19] YANG Y M, LIU X. A re-examination of text categorization methods[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, Aug 15-19, 1999. New York: ACM, 1999: 42-49.
[20] ALIZADEH M, EDSALL T. On the data path performance of leaf-spine datacenter fabrics[C]//Proceedings of the 2013 IEEE 21st Annual Symposium on High-Performance Interconnects, Santa Clara, Aug 1-23, 2013: 71-74. |