[1] HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] FELZENSZWALB P F, MCALLESTER D A, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 24-26, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[4] ROWLEY H, BALUJA S, KANADE T. Neural network based face detection[J]. IEEE Transactions on Pattern Ana-lysis and Machine Intelligence, 1998, 20(1): 23-38.
[5] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773.
[6] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 886-893.
[7] OUYANG W L, WANG X G. Joint deep learning for pedestrian detection[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2056-2063.
[8] GAO Q Y, FANG H S. HOG pedestrian detection algorithm of multiple convolution feature fusion[J]. Computer Science, 2017, 44(Z2): 199-201.
高琦煜, 方虎生. 多卷积特征融合的HOG行人检测算法[J]. 计算机科学, 2017, 44(Z2): 199-201.
[9] OUYANG W L, ZENG X Y, WANG X G, et al. DeepID-Net: object detection with deformable part based convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1320-1334.
[10] MORDAN T, THOME N, HéNAFF G, et al. Deformable part-based fully convolutional network for object detection [C]//Proceedings of the British Machine Vision Conference 2017, London, Sep 4-7, 2017. Durham: BMVA Press, 2017: 1-14.
[11] GIRSHICK R B, IANDOLA F N, DARRELL T, et al. Deformable part models are convolutional neural networks [C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 437-446.
[12] FUNG G, MANGASARIAN O L. Finite Newton method for Lagrangian support vector machine classification[J]. Neurocomputing, 2003, 55(1/2): 39-55.
[13] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5562-5570.
[14] HE Y H, ZHU C C, WANG J R, et al. Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 2883-2892.
[15] GIRSHICK R B, DONAHUA J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. |