[1] FORTUNATO S. Community detection in graphs[J]. Physics Reports, 2010, 486: 75-174.
[2] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
[3] ZHANG X, LIU B Q, WANG X L. Research on community detection methods in complex network[J]. Computer Engin-eering and Applications, 2015, 51(24): 1-7.
张鑫, 刘秉权, 王晓龙. 复杂网络中社区发现方法的研究[J]. 计算机工程与应用, 2015, 51(24): 1-7.
[4] GUIMERA R, AMARAL L. Functional cartography of com-plex metabolic networks[J]. Nature, 2005, 433(7028): 895-900.
[5] KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs[J]. The Bell System Technical Journal, 1970, 49(2): 291-307.
[6] CAPOCCI A, BALDASSARRI A, SERVEDIO V D, et al. Friendship, collaboration and semantics in Flickr: from social interaction to semantic similarity[C]//Proceedings of the 2010 International Workshop on Modeling Social Media, Toronto, Jun 13, 2010. New York: ACM, 2010: 1-4.
[7] PALLA G, BARABáSI A, VICSEK T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.
[8] NEWMAN M E. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
[9] NEWMAN M E, GIRVAN M. Finding and evaluating com-munity structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[10] NEWMAN M E. Equivalence between modularity optim-ization and maximum likelihood methods for community detection[J]. Physical Review E, 2016, 94(5): 052315.
[11] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007, 76(3): 036106.
[12] MARTIN T, BALL B, NEWMAN M E. Structural inference for uncertain networks[J]. Physical Review E, 2016, 93(1): 012306.
[13] PALLA G, DERéNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818.
[14] DERéNYI I, PALLA G, VICSEK T. Clique percolation in random networks[J]. Physical Review Letters, 2005, 94(16): 160202.
[15] PALLA G, FARKAS I J, POLLNER P, et al. Directed network modules[J]. New Journal of Physics, 2007, 9(6): 186.
[16] ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Procee-dings of the National Academy of Sciences, 2008, 105(4): 1118-1123.
[17] LANCICHINETTI A, FORTUNATO S, KERTéSZ J. Det-ecting the overlapping and hierarchical community structure in complex networks[J]. New Journal of Physics, 2009, 11(3): 033015.
[18] ZHANG S, WANG R S, ZHANG X S. Identification of overlapping community structure in complex networks using fuzzy C-means clustering[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 374(1): 483-490.
[19] DENG G L, MA Z X, LI X B. Overlapping community detection algorithm based on Markov chain clustering[C]// Proceedings of the 2018 IEEE 3rd International Conference on Big Data Analysis, Shanghai, Mar 9-12, 2018. Piscataway: IEEE, 2018: 458-462.
[20] QIU B J, IVANOVA K, YEN J, et al. Study of effect of node seniority in social networks[C]//Proceedings of the 2010 IEEE International Conference on Intelligence and Security Informatics, Vancouver, May 23-26, 2010. Piscataway: IEEE, 2010: 147-149.
[21] QIU B J, IVANOVA K, YEN J, et al. Behavior evolution and event-driven growth dynamics in social networks[C]// Proceedings of the 2010 IEEE 2nd International Conference on Social Computing, Minneapolis, Aug 20-22, 2010. Was-hington: IEEE Computer Society, 2010: 217-224.
[22] DAKICHE N, TAYEB F B, SLIMANI Y, et al. Tracking community evolution in social networks: a survey[J]. Infor-mation Processing & Management, 2019, 56(3): 1084-1102.
[23] ASUR S, PARTHASARATHY S, UCAR D. An event-based framework for characterizing the evolutionary behavior of interaction graphs[J]. ACM Transactions on Knowledge Discovery from Data, 2009, 3(4): 1-36.
[24] BRóDKA P, SAGANOWSKI S, KAZIENKO P. GED: the method for group evolution discovery in social networks[J]. Social Network Analysis and Mining, 2013, 3(1): 1-14.
[25] GREENE D, DOYLE D, CUNNINGHAM P. Tracking the evolution of communities in dynamic social networks[C]// Proceedings of the 2010 International Conference on Adv-ances in Social Networks Analysis and Mining, Odense, Aug 9-11, 2010. Washington: IEEE Computer Society, 2010: 176-183.
[26] CAZABET R, AMBLARD F, HANACHI C. Detection of overlapping communities in dynamical social networks[C]// Proceedings of the 2010 IEEE 2nd International Conference on Social Computing, SocialCom/IEEE International Confer-ence on Privacy, Security, Risk and Trust, Minneapolis, Aug 20-22, 2010. Washington: IEEE Computer Society, 2010: 309-314.
[27] ZHAO Z Y, LI C, ZHANG X J, et al. An incremental method to detect communities in dynamic evolving social networks[J]. Knowledge Based Systems, 2019, 163: 404-415.
[28] GAO W H, LUO W J, BU C Y. Evolutionary community discovery in dynamic networks based on leader nodes[C]//Proceedings of the 2016 International Conference on Big Data and Smart Computing, Hong Kong, China, Jan 18-20, 2016. Washington: IEEE Computer Society, 2016: 53-60.
[29] XIN Y, XIE Z Q, YANG J. An adaptive random walk sam-pling method on dynamic community detection[J]. Expert Systems with Applications, 2016, 58: 10-19.
[30] HE J, CHEN D. A fast algorithm for community detection in temporal network[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 429: 87-94.
[31] GUO C, WANG J, ZHANG Z. Evolutionary community structure discovery in dynamic weighted networks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 413(11): 565-576.
[32] ZHANG G Z, ZHANG X K, SU J, et al. Research on evo-lutionary community discovery algorithm in dynamic weighted networks[J]. Application Research of Computers, 2019, 36(4): 992-996.
张高祯, 张贤坤, 苏静, 等. 动态加权网络中的演化社区发现算法研究[J]. 计算机应用研究, 2019, 36(4): 992-996.
[33] AGARWAL P, VERMA R, AGARWAL A, et al. DyPerm: maximizing permanence for dynamic community detection [C]//LNCS 10937: Proceedings of the 22nd Pacific-Asia Con-ference on Knowledge Discovery and Data Mining, Melbourne, Jun 3-6, 2018. Berlin, Heidelberg: Springer, 2018: 437-449.
[34] CORDEIRO M, SARMENTO R P, GAMA J. Dynamic community detection in evolving networks using locality modularity optimization[J]. Social Network Analysis and Mining, 2016, 6(1): 15.
[35] GUO K, PENG S B, CHEN Y Z, et al. Incremental dynamic community detection algorithm based on density clustering [J]. Pattern Recognition and Artificial Intelligence, 2018, 31(11): 965-978.
郭昆, 彭胜波, 陈羽中, 等. 基于密度聚类的增量动态社区发现算法[J]. 模式识别与人工智能, 2018, 31(11): 965-978.
[36] DUAN D, LI Y, LI R, et al. Incremental K-clique clustering in dynamic social networks[J]. Artificial Intelligence Review, 2012, 38(2): 129-147.
[37] JIANG S Y, YANG B H, WANG L X. An adaptive dynamic community detection algorithm based on incremental spectral clustering[J]. Acta Automatica Sinica, 2015, 41(12): 2017-2025.
蒋盛益, 杨博泓, 王连喜. 一种基于增量式谱聚类的动态社区自适应发现算法[J]. 自动化学报, 2015, 41(12): 2017-2025.
[38] NING H Z, XU W, CHI Y, et al. Incremental spectral clustering by efficiently updating the Eigen-system[J]. Pattern Recognition, 2010, 43(1): 113-127.
[39] XIE J R, CHEN M M, SZYMANSKI B K. LabelrankT: incremental community detection in dynamic networks via label propagation[C]//Proceedings of the 2013 Workshop on Dynamic Networks Management and Mining, New York, Jun 22-27, 2013. New York: ACM, 2013: 25-32.
[40] XIN Y, XIE Z, YANG J. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking[J]. Physica A: Statistical Mechanics and Its App-lications, 2016, 450: 241-252.
[41] ZHU T Y. Incremental dynamic community discovery algor-ithm based on density[D]. Fuzhou: Fuzhou University, 2017.
朱腾云. 基于密度的增量动态社区发现算法研究[D]. 福州: 福州大学, 2017.
[42] SUN H, HUANG J, ZHANG X, et al. IncOrder: incremen-tal density-based community detection in dynamic networks[J]. Knowledge-Based Systems, 2014, 72: 1-12.
[43] QIN X, DAI W, JIAO P, et al. A multi-similarity spectral clustering method for community detection in dynamic networks[J]. Scientific Reports, 2016, 6: 31454.
[44] LIU F, CHOI D, XIE L, et al. Global spectral clustering in dynamic networks[J]. Proceedings of the National Academy of Sciences, 2018, 115(5): 927-932.
[45] JDIDIA M B, ROBARDET C, Fleury E. Communities detection and analysis of their dynamics in collaborative networks[C]//Proceedings of the 2007 IEEE International Conference on Digital Information Management, Lyon, Dec 11-13, 2007. Piscataway: IEEE, 2007: 744-749.
[46] LIU K, HUANG J, SUN H, et al. Label propagation based evolutionary clustering for detecting overlapping and non-overlapping communities in dynamic networks[J]. Knowledge- Based Systems, 2015, 89: 487-496.
[47] SATTARI M, ZAMANIFAR K. A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks[J]. Journal of Com-putational Science, 2018, 25: 122-133.
[48] PONS P, LATAPY M. Computing communities in large networks using random walks[C]//LNCS 3733: Proceedings of the 20th International Symposium, Istanbul, Oct 26-28, 2005. Berlin, Heidelberg: Springer, 2005: 284-293.
[49] XIE J R, SZYMANSKI B K. Labelrank: a stabilized label propagation algorithm for community detection in networks[C]//Proceedings of the 2nd IEEE Network Science Workshop, West Point, Apr 29-May 1, 2013. Washington: IEEE Computer Society, 2013: 138-143.
[50] JIN D, YOU X X, LIU Y S, et al. Structural feature enhanced Markov random field for community detection in large-scale networks[J]. Chinese Journal of Computers, 2019, 42(12): 2821-2835.
金弟, 尤心心, 刘岳森, 等. 结构特征强化的高效马尔可夫随机场社团发现方法[J]. 计算机学报, 2019, 42(12): 2821-2835.
[51] XU K S, HERO A O. Dynamic stochastic blockmodels for time-evolving social networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(4): 552-562.
[52] YANG T, CHI Y, ZHU S, et al. Detecting communities and their evolutions in dynamic social networks—a Bayesian approach[J]. Machine Learning, 2011, 82(2): 157-189.
[53] WANG W, JIAO P, HE D, et al. Autonomous overlapping community detection in temporal networks: a dynamic Bayesian nonnegative matrix factorization approach[J]. Knowledge-Based Systems, 2016, 110: 121-134.
[54] LIN Y R, CHI Y, ZHU S H, et al. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks[C]//Proceedings of the 17th International Confer-ence on World Wide Web, Beijing, Apr 21-25, 2008. New York: ACM, 2008: 685-694.
[55] GAO F, YUAN L, WANG W, et al. Dynamic community detection using nonnegative matrix factorization[C]//Proc-eedings of the 2017 International Conference on Computing Intelligence and Information System, Nanjing, Apr 21-23,2017. Washington: IEEE Computer Society, 2017: 39-45.
[56] MA X, DONG D. Evolutionary nonnegative matrix factor-ization algorithms for community detection in dynamic networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(5): 1045-1058.
[57] MA X, LI D, TAN S, et al. Detecting evolving com-munities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization[J]. Physica A: Statal Mechanics and Its Applications, 2019, 530: 121279.
[58] MA L, ZHANG Y, LI J, et al. Community-aware dynamic network embedding by using deep autoencoder[J]. Infor-mation Sciences, 2020, 519: 22-42.
[59] MUCHA P J, RICHARDSON T, MACON K, et al. Com-munity structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.
[60] NIU X, SI W, WU C Q. A label-based evolutionary com-puting approach to dynamic community detection[J]. Computer Communications, 2017, 108: 110-122.
[61] GAO C, CHEN Z, LI X, et al. Multiobjective discrete particle swarm optimization for community detection in dynamic networks[J]. Europhysics Letters, 2018, 122(2): 28001.
[62] WANG C, DENG Y, LI X, et al. Dynamic community detection based on a label-based swarm intelligence[J]. IEEE Access, 2019, 7: 161641-161653.
[63] AYNAUD T, GUILLAUME J L. Long range community detection[C]//Proceedings of the 2010 LAWDN Latin-American Workshop on Dynamic Networks, Buenos Aires, Nov 3, 2010: 1-4.
[64] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008.
[65] NEWMAN M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Scien-ces, 2006, 103(23): 8577-8582.
[66] SHEN H, CHENG X, CAI K, et al. Detect overlapping and hierarchical community structure in networks[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(8): 1706-1712.
[67] FORTUNATO S, BARTHELEMY M. Resolution limit in community detection[J]. Proceedings of the National Academy of Sciences, 2007, 104(1): 36-41.
[68] CHAKRABORTY T, SRINIVASAN S, GANGULY N, et al. On the permanence of vertices in network communities[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 1396-1405.
[69] TAKAFFOLI M, RABBANY R, ZA?ANE O R. Incremental local community identification in dynamic social networks [C]//Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, Aug 25-29, 2013. New York: ACM, 2013: 90-94.
[70] TABARZAD M A, HAMZEH A. Incremental community miner for dynamic networks[J]. Applied Intelligence, 2018, 48(10): 3372-3393.
[71] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algo-rithms[J]. Physical Review E, 2008, 78(4): 046110.
[72] PARéS F, GASULLA D G, VILALTA A, et al. Fluid communities: a competitive, scalable and diverse community detection algorithm[C]//Proceedings of the 6th International Conference on Complex Networks and Their Applications, Lyon, Nov 29-Dec 1, 2017. Berlin, Heidelberg: Springer, 2017: 229-240.
[73] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
[74] CLAUSET A, Newman M E, Moore C. Finding community structure in very large networks[J]. Physical Review E, 2004, 70(6): 066111.
[75] WEEKS M R, CLAIR S, BORGATTI S P, et al. Social networks of drug users in high-risk sites: finding the connections[J]. AIDS and Behavior, 2002, 6(2): 193-206.
[76] KARATA? A, ?AHIN S. Application areas of community detection: a review[C]//Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, Ankara, Dec 3-4, 2018. Piscataway: IEEE, 2018: 65-70.
[77] FERRARA E, DE MEO P, CATANESE S, et al. Detecting criminal organizations in mobile phone networks[J]. Expert Systems with Applications, 2014, 41(13): 5733-5750.
[78] CALDERONI F, BRUNETTO D, PICCARDI C. Commun-ities in criminal networks: a case study[J]. Social Networks, 2017, 48: 116-125.
[79] SARVARI H, ABOZINADAH E, MBAZIIRA A, et al. Constructing and analyzing criminal networks[C]//Proceedings of the IEEE Security and Privacy Workshops, San Jose, May 17-18, 2014. Washington: IEEE Computer Society, 2014: 84-91.
[80] LU Y, ZHANG P, LIU J, et al. Health-related hot topic detection in online communities using text clustering[J]. PLoS One, 2013, 8(2): e56221.
[81] SALATHé M, JONES J H. Dynamics and control of diseases in networks with community structure[J]. PLoS Computational Biology, 2010, 6(4): e1000736.
[82] BECHTEL J J, KELLEY W A, COONS T A, et al. Lung cancer detection in patients with airflow obstruction identified in a primary care outpatient practice[J]. Chest, 2005, 127(4): 1140-1145.
[83] HAQ N F, WANG Z J. Community detection from genomic datasets across human cancers[C]//Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing, Washington, Dec 7-9, 2016. Piscataway: IEEE, 2016: 1147-1150.
[84] TAYA F, DE SOUZA J, THAKOR N V, et al. Comparison method for community detection on brain networks from neuroimaging data[J]. Applied Network Science, 2016, 1: 8.
[85] YANG Y, SUN P G, HU X, et al. Closed walks for community detection[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 397: 129-143.
[86] MOSADEGH M J, BEHBOUDI M. Using social network paradigm for developing a conceptual framework in CRM[J]. Australian Journal of Business and Management Research, 2011, 1(4): 63.
[87] REZAEIMEHR F, MORADI P, AHMADIAN S, et al. TCARS: time-and community-aware recommendation system[J]. Future Generation Computer Systems, 2018, 78: 419-429.
[88] GURINI D F, GASPARETTI F, MICARELLI A, et al. iSCUR: interest and sentiment-based community detection for user recommendation on Twitter[C]//LNCS 8538: Procee-dings of the 22nd International Conference on User Mod-eling, Adaptation, and Personalization, Aalborg, Jul 7-11, 2014. Berlin, Heidelberg: Springer, 2014: 314-319.
[89] LALWANI D, SOMAYAJULU D V L N, KRISHNA P R. A community driven social recommendation system[C]//Proc-eedings of the 2015 IEEE International Conference on Big Data, Santa Clara, Oct 29 - Nov 1, 2015. Washington: IEEE Computer Society, 2015: 821-826.
[90] BRINGMANN B, BERLINGERIO M, BONCHI F, et al. Learning and predicting the evolution of social networks[J]. IEEE Intelligent Systems, 2010, 25(4): 26-35.
[91] ?LHAN N, ??üDüCü ? G. Feature identification for predicting community evolution in dynamic social networks[J]. Engineering Applications of Artificial Intelligence, 2016, 55: 202-218.
[92] VALVERDE-REBAZA J C, DE ANDRADE LOPES A. Link prediction in complex networks based on cluster infor-mation[C]//LNCS 7589: Proceedings of the 21st Brazilian Symposium on Artificial Intelligence, Curitiba, Oct 20-25, 2012. Berlin, Heidelberg: Springer, 2012: 92-101.
[93] SOUNDARAJAN S, HOPCROFT J E. Using community information to improve the precision of link prediction methods[C]//Proceedings of the 21st World Wide Web Conference, Lyon, Apr 16-20, 2012. New York: ACM, 2012: 607-608.
[94] XIA Z, BU Z. Community detection based on a semantic network[J]. Knowledge-Based Systems, 2012, 26: 30-39.
[95] INTERDONATO R, TAGARELLI A, IENCO D, et al. Local community detection in multilayer networks[J]. Data Mining and Knowledge Discovery, 2017, 31(5): 1444-1479.
[96] MENG Q X, TAFAVOGH S, KENNEDY P J, et al. Com-munity detection on heterogeneous networks by multiple semantic-path clustering[C]//Proceedings of the 6th Inter-national Conference on Computational Aspects of Social Networks, Porto, Jul 30-Aug 1, 2014. Piscataway: IEEE, 2014: 7-12.
[97] WANG H W, ZHANG F Z, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 592-600. |