[1] YU K, LIU L, LI J Y, et al. Multi-source causal feature selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(9): 2240-2256.
[2] YU K, LIU L, LI J Y. Discovering Markov blanket from multiple interventional datasets[J]. arXiv:1801.08295, 2018.
[3] YU K, WU X D, DING W, et al. Markov blanket feature selection using representative sets[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2775-2788.
[4] BEYAZIT E, ALAGURAJAH J, WU X D. Online learning from data streams with varying feature spaces[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3232-3239.
[5] PEARL J, MACKENZIE D. The book of why: the new science of cause and effect[M]. New York: Basic Books, 2018.
[6] SCH?LKOPF B. Causality for machine learning[J]. arXiv:1911.10500, 2019.
[7] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction, and search[M]. Cambridge: MIT Press, 2000.
[8] COLOMBO D, MAATHUIS M H, KALISCH M, et al. Learning high-dimensional directed acyclic graphs with latent and selection variables[J]. The Annals of Statistics, 2012, 40(1): 294-321.
[9] SILVERSTEIN C, BRIN S, MOTWANI R, et al. Scalable techniques for mining causal structures[J]. Data Mining and Knowledge Discovery, 2000, 4(2/3): 163-192.
[10] MANI S, COOPER G F. Causal discovery using a Bayesian local causal discovery algorithm[C]//Proceedings of the 11th World Congress on Medical Informatics, San Francisco, Sep 7-11, 2004. Amsterdam: IOS Press, 2004: 731-735.
[11] YIN J X, ZHOU Y, WANG C Z, et al. Partial orientation and local structural learning of causal networks for prediction [C]//Proceedings of the Causation and Prediction Challenge at WCCI 2008, Hong Kong, China, Jun 1-6, 2008: 93-105.
[12] GAO T, JI Q. Efficient Markov blanket discovery and its application[J]. IEEE Transactions on Cybernetics, 2017, 47(5): 1169-1179.
[13] GAO T, JI Q. Local causal discovery of direct causes and effects[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 2512-2520.
[14] TSAMARDINOS I, BROWN L E, Aliferis C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78.
[15] TSAMARDINOS I, ALIFERIS C F, Statnikov A R. Algorithms for large scale Markov blanket discovery[C]//Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference, St. Augustine, May 12-14, 2003. Menlo Park: AAAI, 2003: 376-381.
[16] BORBOUDAKIS G, TSAMARDINOS I. Forward-backward selection with early dropping[J]. Journal of Machine Learning Research, 2019, 20: 8.
[17] GAO T, JI Q. Efficient score-based Markov blanket discovery[J]. International Journal of Approximate Reasoning, 2017, 80: 277-293.
[18] ALIFERIS C F, STATNIKOV A R, TSAMARDINOS I, et al. Local causal and Markov blanket induction for causal discovery and feature selection for classification part II: analysis and extensions[J]. Machine Learning Research, 2010, 11: 235-284.
[19] YU K, LIU L, LI J, et al. Mining Markov blankets without causal sufficiency[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6333-6347.
[20] WANG H, LING Z L, YU K, et al. Towards efficient and effective discovery of Markov blankets for feature selection[J]. Information Sciences, 2019, 509: 227-242.
[21] YU K, LIU L, LI J. A unified view of causal and non-causal feature selection[J]. arXiv:1802.05844v4, 2018. |