[1] LIU R X, GAO Y L, DENG Z H, et al. Multi-view clustering algorithm integrating with sparse hidden view information learning[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2117-2129.
刘瑞秀, 高艳丽, 邓赵红, 等. 融合稀疏隐视角信息学习的多视角聚类算法[J]. 计算机科学与探索, 2019, 13(12): 2117-2129.
[2] BISSON G, GRIMAL C. Co-clustering of multi-view datasets: a parallelizable approach[C]//Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, Dec 10-13, 2012. Washington: IEEE Computer Society, 2012: 828-833.
[3] LIU J, CAO F Y, GAO X Z, et al. A cluster-weighted kernel K-means method for multi-view clustering[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Con-ference, the 10th AAAI Symposium on Educational Adv-ances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 4860-4867.
[4] ZHANG W, DENG Z H, WANG S T. Kernel-induced incom-plete multi-view clustering[J]. Journal of Frontiers of Com-puter Science and Technology, 2021, 15(2): 284-293.
张炜, 邓赵红, 王士同. 基于核诱导的不完整多视角聚类[J]. 计算机科学与探索, 2021, 15(2): 284-293.
[5] HOU C P, NIE F P, TAO H, et al. Multi-view unsupervised feature selection with adaptive similarity and view weight[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1998-2011.
[6] ZHUGE W Z, NIE F P, HOU C P, et al. Unsupervised single and multiple views feature extraction with structured graph[J]. IEEE Transactions on Knowledge and Data Engin-eering, 2017, 29(10): 2347-2359.
[7] KANG Z, ZHOU W T, ZHAO Z T, et al. Large-scale multi-view subspace clustering in linear time[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 4412-4419.
[8] WEN J, ZHANG Z, ZHANG Z, et al. Generalized incom-plete multiview clustering with flexible locality structure diffusion[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 101-114.
[9] ZHANG Y, KONG X W, WANG Z F, et al. Matrix factoriza-tion for multi-view clustering[J]. Acta Automatica Sinica, 2018, 44(12): 2160-2169.
张祎, 孔祥维, 王振帆, 等. 基于多视图矩阵分解的聚类分析[J]. 自动化学报, 2018, 44(12): 2160-2169.
[10] YIN M, HUANG W T, GAO J B. Shared generative latent representation learning for multi-view clustering[C]//Pro-ceedings of the 34th AAAI Conference on Artificial Intellig-ence, the 32nd Innovative Applications of Artificial Intellig-ence Conference, the 10th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 6688-6695.
[11] GAO J, HAN J W, LIU J L, et al. Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of the 13th SIAM International Conference on Data Mining, Austin, May 2-4, 2013. Philadelphia: SIAM, 2013: 252-260.
[12] WANG Z F, KONG X W, FU H Y, et al. Feature extraction via multi-view non-negative matrix factorization with local graph regularization[C]//Proceedings of the 2015 IEEE Inter-national Conference on Image Processing, Quebec City, Sep 27-30, 2015. Piscataway: IEEE, 2015: 3500-3504.
[13] YANG Z, MICHAILIDIS G. A non-negative matrix factoriza-tion method for detecting modules in heterogeneous omics multi-modal data[J]. Bioinformatics, 2016, 32(1): 1-8.
[14] ZHOU G X, CICHOCKI A, ZHANG Y, et al. Group com-ponent analysis for multiblock data: common and individual feature extraction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(11): 2426-2439.
[15] WANG Z, YUAN W, GIOVANNI M. Sparse multi-view matrix factorization: a multivariate approach to multiple tissue comparisons[J]. Bioinformatics, 2015, 31(19): 3163-3171.
[16] WANG J, TIAN F, YU H C, et al. Diverse non-negative matrix factorization for multiview data representation[J]. IEEE Transactions on Cybernetics, 2018, 48(9): 2620-2632.
[17] ZHANG Z, ZHANG Y, LIU G C, et al. Joint label prediction based semi-supervised adaptive concept factorization for robust data representation[J]. IEEE Transactions on Know-ledge and Data Engineering, 2020, 32(5): 952-970.
[18] JIA Y Q, SALZMANN M, DARRELL T, et al. Factorized latent spaces with structured sparsity[C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems, Vancouver, Dec 6-9, 2010. Red Hook: Curran Associates, 2010: 982-990.
[19] HIDRU D, GOLDENBERG A. EquiNMF: graph regularized multiview nonnegative matrix factorization[J]. arXiv:1409. 4018, 2014.
[20] NIE F P, LI J, LI X L, et al. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1881-1887.
[21] JENATTON R, OBOZINSKI G, BACH F R, et al. Struc-tured sparse principal component analysis[C]//Proceedings of the 13th International Conference on Artificial Intellig-ence and Statistics, Sardinia, May 13-15, 2010: 366-373.
[22] YUAN M, LIN Y. Model selection and estimation in reg-ression with grouped variables[J]. Journal of the Royal Sta-tistical Society. Series B: Statistical Methodology, 2006, 68(1): 49-67.
[23] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society. Series B: Methodological, 1996, 58(1): 267-288.
[24] BENGIO S, PEREIRA F C N, SINGER Y, et al. Group sparse coding[C]//Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 7-10, 2009. Red Hook: Curran Associates, 2009: 82-89.
[25] NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint [?2], 1-norms minimization[C]//Pro-ceedings of the 24th Annual Conference on Neural Infor-mation Processing Systems, Vancouver, Dec 6-9, 2010. Red Hook: Curran Associates, 2010: 1813-1821.
[26] XIA T, TAO D C, MEI T, et al. Multiview spectral embed-ding[J]. IEEE Transactions on Systems, Man, and Cyber-netics, Part B, 2010, 40(6): 1438-1446. |