[1] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[2] OLIVA D, AZIZ M A E, HASSANIEN A E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm[J]. Applied Energy, 2017, 200: 141-154.
[3] YANG W L, ZHOU X T, CHEN M N. New chaotic simplified particle swarm optimization algorithm based on logistic mapping[J]. Computer and Modernization, 2019(12): 15-20.
杨万里, 周雪婷, 陈孟娜. 基于Logistic映射的新型混沌简化PSO算法[J]. 计算机与现代化, 2019(12): 15-20.
[4] HEGAZY A E, MAKHLOUF M A, EL-TAWEL S G. Im-proved salp swarm algorithm for feature selection[J]. Journal of King Saud University-Computer and Information Sciences, 2020, 32(3): 335-344.
[5] WANG X W, WANG W, WANG Y. An adaptive bat algorithm [C]//LNCS 7996: Proceedings of the 9th International Con-ference on Intelligent Computing Theories and Technology, Nanning, Jul 28-31, 2013. Berlin, Heidelberg: Springer, 2013: 216-223.
[6] WANG Y R, ZHANG D M, FAN Y. A mutually beneficial adaptive satin bowerbird optimization algorithm based on non-uniform mutation[J]. Computer Engineering & Science, 2020, 42(12): 2233-2241.
王依柔, 张达敏, 樊英. 非均匀变异的互利自适应缎蓝园丁鸟优化算法[J]. 计算机工程与科学, 2020, 42(12): 2233-2241.
[7] WANG W H, XU L, CHAU K W, et al. Yin-Yang firefly algorithm based on dimensionally Cauchy mutation[J]. Expert Systems with Applications, 2020, 150: 113216.
[8] LI J, LUO Y K, WANG C, et al. Simplified particle swarm algorithm based on nonlinear decrease extreme disturbance and Cauchy mutation[J]. International Journal of Parallel, Emergent and Distributed Systems, 2020, 35(3): 236-245.
[9] WEN G L, GE H M, LI H P, et al. A multi-objective particle swarm optimization algorithm based on reverse learning[J]. Electronics Science Technology and Application, 2020, 7(2).
[10] XU Y T, CHEN H L, LUO J, et al. Enhanced Moth-flame optimizer with mutation strategy for global optimization[J]. Information Sciences, 2019, 492: 181-203.
[11] PAPPULA L, GHOSH D. Synthesis of linear aperiodic array using Cauchy mutated cat swarm optimization[J]. AEU- International Journal of Electronics and Communications, 2017, 72: 52-64.
[12] YANG H D, E J Q. An adaptive chaos immune optimiza-tion algorithm with mutative scale and its application[J]. Control Theory & Applications, 2009, 26(10): 1069-1074.
杨海东, 鄂加强. 自适应变尺度混沌免疫优化算法及其应用[J]. 控制理论与应用, 2009, 26(10): 1069-1074.
[13] LIU J S, YUAN M M, ZUO F. Global search-oriented adap-tive leader salp swarm algorithm[J/OL]. Control and Decision[2021-04-09]. https://doi.org/10.13195/j.kzyjc.2020.0090.
刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J/OL]. 控制与决策[2021-04-09]. https://doi.org/10.13195/j.kzyjc.2020.0090.
[14] HE Q, LIN J, XU H. Hybrid Cauchy mutation and uniform distribution of grasshopper optimization algorithm[J/OL]. Control and Decision [2021-04-09]. https://doi.org/10.13195/j.kzyjc.2019.1609.
何庆, 林杰, 徐航. 混合柯西变异和均匀分布的蝗虫优化算法[J/OL]. 控制与决策[2021-04-09]. https://doi.org/10. 13195/j.kzyjc.2019.1609.
[15] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[16] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Sys-tems, 2015, 89: 228-249.
[17] LV X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J/OL]. Journal of Beijing University of Aeronautics and Astronautics [2020-09-11]. https://doi.org/ 10.13700/j.bh.1001-5965.2020.0298.
吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J/OL]. 北京航空航天大学学报[2020-09-11]. https://doi.org/10. 13700/j.bh.1001-5965.2020.0298. |