[1] YANG C J. Research on several issues of image denoising and its effect evaluation[D]. Changchun: Jilin University, 2016.
杨成佳. 图像去噪及其效果评估若干问题研究[D]. 长春:吉林大学, 2016.
[2] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522.
[3] FAROOQUE M A, ROHANKAR J S. Survey on various noises and techniques for denoising the color image[J]. International Journal of Application or Innovation in Engineering & Management, 2013, 2(11): 217-221.
[4] WIENER N, WIENER N, MATHEMATICIAN C, et al. Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[M]. Cambridge: MIT Press, 1949.
[5] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[6] YAROSLAVSKY L P, EGIAZARIAN K O, ASTOLA J T. Transform domain image restoration methods: review, comparison, and interpretation[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4304: 155-169.
[7] KONG Z, YANG X, HE L. A comprehensive comparison of multi-dimensional image denoising methods[J]. arXiv:2011.03462, 2020.
[8] DABOV K, FOI A, KATKOVNIK V, et al. Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space[C]//Proceedings of the 2007 International Conference on Image Processing, San Antonio, Sep 16-19, 2007. Piscataway: IEEE, 2007: 313-316.
[9] DANIELYAN A, FOI A, KATKOVNIK V, et al. Denoising of multispectral images via nonlocal groupwise spectrum-PCA[C]//Proceedings of the 5th European Conference on Colour in Graphics, Imaging, and Vision, and the 12th International Symposium on Multispectral Colour Science, Joensuu, Jun 14-17, 2010. Piscataway: IEEE, 2010: 261-266.
[10] MAGGIONI M, KATKOVNIK V, EGIAZARIAN K, et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing, 2012, 22(1): 119-133.
[11] TANG C, XU J L, ZHOU Z G. Strong noise image-denoising algorithm based on improved curvature filters[J]. Journal of Image and Graphics, 2019, 24(3): 346-356.
汤成, 许建龙, 周志光. 改进的曲率滤波强噪声图像去噪方法[J]. 中国图象图形学报, 2019, 24(3): 346-356.
[12] ZHANG H J, ZHANG D M, YAN W, et al. Wavelet transform image denoising algorithm based on improved threshold function[J]. Application Research of Computers, 2020, 37(5): 1545-1548.
张绘娟, 张达敏, 闫威, 等. 基于改进阈值函数的小波变换图像去噪算法[J]. 计算机应用研究, 2020, 37(5): 1545-1548.
[13] LI G H, LI J J, FAN H. Image denoising algorithm based on adaptive matching pursuit[J]. Computer Science, 2020, 47(1): 176-185.
李桂会, 李晋江, 范辉. 自适应匹配追踪图像去噪算法[J]. 计算机科学, 2020, 47(1): 176-185.
[14] YUAN X J, ZHOU T, LI C. Research on image denoising algorithm based on non-local clustering with sparse prior [J]. Computer Engineering and Applications, 2020, 56(18): 177-185.
袁小军, 周涛, 李琛. 基于稀疏先验的非局域聚类图像去噪算法研究[J]. 计算机工程与应用, 2020, 56(18): 177-185.
[15] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Jun 20-26, 2005. Washington: IEEE Computer Society, 2005: 60-65.
[16] CHANG Y Y, ZHANG X D. Non-local image denoising algorithm based on multi-scale similarity prior[J]. Computer Knowledge and Technology, 2020, 16(2): 200-203.
常圆圆, 张选德. 基于多尺度相似先验的非局部图像去噪算法[J]. 电脑知识与技术, 2020, 16(2): 200-203.
[17] MO Y G. Research on image denoising method based on structure prior and sparse representation[D]. Xi??an: Xidian University, 2019.
莫一过. 基于结构先验与稀疏表示的图像去噪方法研究[D]. 西安:西安电子科技大学, 2019.
[18] LIU C S, ZHAO Z G, LI Q, et al. Enhanced low-rank representation image denoising algorithm[J]. Computer Engineering and Applications, 2020, 56(2): 216-225.
刘成士, 赵志刚, 李强, 等. 加强的低秩表示图像去噪算法[J]. 计算机工程与应用, 2020, 56(2): 216-225.
[19] LYU J R, LUO X G, QI S F, et al. Image denoising using weighted nuclear norm minimization with preserving local structure[J]. Laser & Optoelectronics Progress, 2019, 56(16): 57-64.
吕俊瑞, 罗学刚, 岐世峰, 等. 保持局部结构的加权核范数最小化图像去噪[J]. 激光与光电子学进展, 2019, 56(16): 57-64.
[20] BUADES A, COLL B, MOREL J M. Non-local means denoising[J]. Image Processing on Line, 2011, 1: 208-212.
[21] KNAUS C, ZWICKER M. Progressive image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3114-3125.
[22] GONG Y, SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786-1798.
[23] WU G W, WANG C M, BAO J D, et al. A wavelet threshold de-noising algorithm based on adaptive threshold function[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1340-1347.
吴光文, 王昌明, 包建东, 等. 基于自适应阈值函数的小波阈值去噪方法[J]. 电子与信息学报, 2014, 36(6): 1340-1347.
[24] ELAN M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.
[25] DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2012, 22(4): 1620-1630.
[26] XU J, ZHANG L, ZHANG D. A trilateral weighted sparse coding scheme for real-world image denoising[C]//LNCS 11212: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 21-38.
[27] WEN B, RAVISHANKAR S, BRESLER Y. Structured overcomplete sparsifying transform learning with convergence guarantees and applications[M]. Hingham: Kluwer Academic Publishers, 2015.
[28] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]//Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Sep 27-Oct 4, 2009. Washington: IEEE Computer Society, 2009: 2272-2279.
[29] ZHANG J, ZHAO D, GAO W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336.
[30] XU J, ZHANG L, ZHANG D. External prior guided internal prior learning for real-world noisy image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2996-3010.
[31] HOU Y K, XU J, LIU M X, et al. NLH: a blind pixel-level non-local method for real-world image denoising[J]. IEEE Transactions on Image Processing, 2020, 29: 5121-5135.
[32] ZUO W M, ZHANG L, SONG C W, et al. Texture enhanced image denoising via gradient histogram preservation[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 1203-1210.
[33] XU J, ZHANG L, ZUO W M, et al. Patch group based nonlocal self-similarity prior learning for image denoising [C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 244-252.
[34] CHEN F, ZHANG L, YU H M. External patch prior guided internal clustering for image denoising[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 603-611.
[35] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 479-486.
[36] DONG W S, SHI G M, LI X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach[J]. IEEE Transactions on Image Processing, 2013, 22(2): 700-711.
[37] GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising [C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 2862-2869.
[38] XU J, ZHANG L, ZHANG D, et al. Multi-channel weighted nuclear norm minimization for real color image denoising[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1105-1113.
[39] LIU C S. Research on image denoising algorithm based on low-rank matrix restoration[D]. Chengdu: Southwest Jiaotong University, 2019.
刘成士. 基于低秩矩阵恢复的图像去噪算法的研究[D]. 成都: 西南交通大学, 2019.
[40] CHANG Y, YAN L X, ZHONG S. Hyper-Laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5901-5909.
[41] ZHUANG L N, BIOUCAS-DIAS J M. Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 730-742.
[42] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[43] VALSESIA D, FRACASTORO G, MAGLI E. Deep graph-convolutional image denoising[J]. IEEE Transactions on Image Processing, 2020, 29: 8226-8237.
[44] YAN H S, CHEN X, TAN V Y F, et al. Unsupervised image noise modeling with self-consistent GAN[J]. arXiv:1906. 05762, 2019.
[45] ZHAO D, MA L, LI S N, et al. End-to-end denoising of dark burst images using recurrent fully convolutional networks[J]. arXiv:1904.07483, 2019.
[46] YANG J Y, LIU X, SONG X L, et al. Estimation of signal-dependent noise level function using multi-column convolutional neural network[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 2418-2422.
[47] YU S, PARK B, JEONG J. Deep iterative down-up CNN for image denoising[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2095-2103.
[48] CHEN J W, CHEN J W, CHAO H Y, et al. Image blind denoising with generative adversarial network based noise modeling[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3155-3164.
[49] BURGER H C, SCHULER C J, HARMELING S. Image denoising: can plain neural networks compete with BM3D?[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2392-2399.
[50] ZHANG K, LI Y, ZUO W, et al. Plug-and-play image restoration with deep denoiser prior[J]. arXiv:2008.13751, 2020.
[51] CHEN Y J, POCK T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1256-1272.
[52] TIAN C W, XU Y, FEI L K, et al. Enhanced CNN for image denoising[J]. CAAI Transactions on Intelligence Technology, 2019, 4(1): 17-23.
[53] WANG T Y, SUN M X, HU K N. Dilated deep residual network for image denoising[C]//Proceedings of the 29th IEEE International Conference on Tools with Artificial Intelligence, Boston, Nov 6-8, 2017. Washington: IEEE Computer Society, 2017: 1272-1279.
[54] JIA X X, LIU S Y, FENG X C, et al. FOCNet: a fractional optimal control network for image denoising[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 6054-6063.
[55] CRUZ C, FOI A, KATKOVNIK V, et al. Nonlocality-reinforced convolutional neural networks for image denoising[J]. IEEE Signal Processing Letters, 2018, 25(8): 1216-1220.
[56] WANG X H, LIU F, MA X C. Color image denoising based on depth residual learning[J]. Packaging Engineering, 2019, 40(17): 235-242.
王晓红, 刘芳, 麻祥才. 基于深度残差学习的彩色图像去噪研究[J]. 包装工程, 2019, 40(17): 235-242.
[57] SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 2774-2781.
[58] TAI Y, YANG J, LIU X M, et al. Memnet: a persistent memory network for image restoration[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4539-4547.
[59] MA H Q, MA S P, XU Y L, et al. Image denoising based on improved stacked sparse denoising autoencoder[J]. Computer Engineering and Applications, 2018, 54(4): 199-204.
马红强, 马时平, 许悦雷, 等. 基于改进栈式稀疏去噪自编码器的图像去噪[J]. 计算机工程与应用, 2018, 54(4): 199-204.
[60] CHEN M Y, LI R X, LIU H, et al. Pre-filtering-based group sparse residual constraint image denoising model [J]. Transducer and Microsystem Technologies, 2020, 39(2): 48-51.
陈梦雅, 李润鑫, 刘辉, 等. 基于预滤波的组稀疏残差约束图像去噪模型[J]. 传感器与微系统, 2020, 39(2): 48-51.
[61] CHANG M, LI Q, FENG H J, et al. Spatial-adaptive network for single image denoising[J]. arXiv:2001.10291, 2020.
[62] ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3155-3164.
[63] YUE Z S, YONG H W, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Red Hook: Curran Associates, 2019: 1688-1699.
[64] TIAN C W, XU Y, ZUO W M, et al. Designing and training of a dual CNN for image denoising[J]. arXiv:2007.03951, 2020.
[65] TIAN C W, XU Y, LI Z Y, et al. Attention-guided CNN for image denoising[J]. Neural Networks, 2020, 124: 117-129.
[66] TIAN C W, XU Y, ZUO W M. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461-473.
[67] LIU D, WEN B H, FAN Y C, et al. Non-local recurrent network for image restoration[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 1680-1689.
[68] ZHANG K, ZUO W M, GU S H, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2808-2817.
[69] GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1712-1722.
[70] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: real image restoration via improved data synthesis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2693-2702.
[71] YUE Z S, ZHAO Q, ZHANG L, et al. Dual adversarial network: toward real-world noise removal and noise generation[C]//LNCS 12355: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 41-58.
[72] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[J]. arXiv:2003.06792, 2020.
[73] SONG Y D, ZHU Y F, DU X. Grouped multi-scale network for real-world image denoising[J]. IEEE Signal Processing Letters, 2020, 27: 2124-2128.
[74] ZHOU Y Q, JIAO J B, HUANG H B, et al. When AWGN-based denoiser meets real noises[J]. arXiv:1904.03485, 2019.
[75] KAI Z, ZUO W, LEI Z. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
[76] ISOGAWA K, IDA T, SHIODEERA T, et al. Deep shrinkage convolutional neural network for adaptive noise reduction[J]. IEEE Signal Processing Letters, 2017, 25(2): 224-228.
[77] SOLTANAYEV S, CHUN S Y. Training deep learning based denoisers without ground truth data[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 3257-3267.
[78] JASZEWSKI M, PARAMESWARAN S. Exploring efficient and tunable convolutional blind image denoising networks[C]//Proceedings of the 48th IEEE Applied Imagery Pattern Recognition Workshop, Washington, Oct 15-17, 2019. Piscataway: IEEE, 2019: 1-9.
[79] YEH R A, LIM T Y, CHEN C, et al. Image restoration with deep generative models[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Apr 15-20, 2018. Piscataway: IEEE, 2018: 6772-6776.
[80] LI X M, LIU M, YE Y T, et al. Learning warped guidance for blind face restoration[C]//LNCS 11217: Proceedings of the European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 278-296.
[81] KIM Y, SOH J W, PARK G Y, et al. Transfer learning from synthetic to real-noise denoising with adaptive instance normalization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3479-3489.
[82] ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3262-3271.
[83] CHIANG Y W, SULLIVAN B J. Multi-frame image restoration using a neural network[C]//Proceedings of the 32nd Midwest Symposium on Circuits and Systems, Champaign, Aug 14-16, 1989. Piscataway: IEEE, 1989: 744-747.
[84] ZHOU Y T, CHELLAPPA R, JENKINS B K. A novel approach to image restoration based on a neural network[C]//Proceedings of the IEEE 1st International Conference on Neural Networks, San Diego, 1987. Piscataway: IEEE, 1987: 269-276.
[85] TIAN C W, FEI L K, ZHENG W X, et al. Deep learning on image denoising: an overview[J]. arXiv:1912.13171, 2019.
[86] LIU D, WEN B H, JIAO J B, et al. Connecting image denoising and high-level vision tasks via deep learning[J]. IEEE Transactions on Image Processing, 2020, 29: 3695-3706.
[87] WU Q B, REN W Q, CAO X C. Learning interleaved cascade of shrinkage fields for joint image dehazing and denoising[J]. IEEE Transactions on Image Processing, 2020, 29: 1788-1801.
[88] LIU L, JIA X, LIU J Z, et al. Joint demosaicing and denoising with self guidance[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2237-2246.
[89] QIAN G C, GU J J, REN J S, et al. Trinity of pixel enhancement: a joint solution for demosaicking, denoising and super- resolution[J]. arXiv:1905.02538, 2019. |