[1] JOHNSON S C. Hierarchical clustering schemes[J]. Psycho-metrika, 1967, 32(3): 241-254.
[2] JOHNSON A E, JOHNSON A S. K-means and temporal vari-ability in Kansas City Hopewell Ceramics[J]. American Antiquity, 1975, 40(3): 283-295.
[3] GUO S, WANG K, KANG H, et al. Bin loss for hard exudates segmentation in fundus images[J]. Neurocomputing, 2020, 392: 314-324.
[4] ZHOU A T, ZHOU S G, CAO J, et al. Approaches for scaling DBSCAN algorithm to large spatial databases[J]. Journal of Computer Science & Technology, 2000, 15(6): 509-526.
[5] CHEN Y W, SHEN L L, ZHONG C M, et al. A review of density peak clustering algorithms[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394.
陈叶旺, 申莲莲, 钟才明, 等. 密度峰值聚类算法研究综述[J]. 计算机研究与发展, 2020, 57(2): 378-394.
[6] XIA S Y, PENG D W, MENG D Y, et al. A fast adaptive k-means with no bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 1-13.
[7] BU F Y, ZHANG Q C, YANG L T, et al. An edge-cloud-aided high-order possibilistic c-means algorithm for big data clus-tering[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3100-3109.
[8] ABE K, MINOURA K, MAEDA Y, et al. Model-based clus-tering for flow and mass cytometry data with clinical infor-mation[J]. BMC Bioinformatics, 2020, 21(13): 393.
[9] ISLAM M Z, ESTIVILL-CASTRO V, RAHMAN M A, et al. Combining K-means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering[J]. Expert Systems with Application, 2018, 91: 402-417.
[10] RODRIGUEZ A, LAIO A. Clustering by fast search and ?nd of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[11] DING S F, XU X, WANG Y R. Density peak clustering algorithm based on dissimilarity measure optimization[J]. Journal of Software, 2020, 31(11): 3321-3333.
丁世飞, 徐晓, 王艳茹. 基于不相似性度量优化的密度峰值聚类算法[J]. 软件学报, 2020, 31(11): 3321-3333.
[12] DU M J, DING S F, XU X, et al. Density peaks clustering using geodesic distances[J]. Machine Learning and Cyber-netics, 2018, 9(8): 1335-1349.
[13] LIU R, WANG H, YU X M. Shared-nearest-neighbor- based clustering by fast search and find of density peaks[J]. Infor-mation Sciences, 2018, 450: 200-226.
[14] XIE J Y, GAO H C, XIE W X , et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[15] JIANG J H, CHEN Y J, HAO D H, et al. DPC-LG: density peaks clustering based on logistic distribution and gravita-tion[J]. Physica A: Statistical Mechanics and Its Applica-tions, 2018, 514: 25-35.
[16] SUN L P, TAO T, ZHENG X Y, et al. Combining density peaks clustering and gravitational search method to enhance data clustering[J]. Engineering Applications of Artifical Inte-lligence, 2019, 85: 865-873.
[17] WANG F Y, ZHANG D S, ZHANG X. Adaptive density peak clustering algorithm combined with whale optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102.
王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
[18] JIA L, ZHANG D S, LV D D. Physics-optimized density peak clustering algorithm[J]. Computer Engineering and App-lications, 2020, 56(13): 47-53.
贾露, 张德生, 吕端端. 物理学优化的密度峰值聚类算法[J]. 计算机工程与应用, 2020, 56(13): 47-53.
[19] YANG X H, ZHU Q P, HUANG Y J, et al. Parameter-free Laplacian centrality peaks clustering[J]. Pattern Recogni-tion Letters, 2017, 100: 167-173.
[20] GAO S, MA J, CHEN Z M, et al. Ranking the spreading ability of nodes in complex networks based on local struc-ture[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 403: 130-147.
[21] QI X Q, FULLER E, LUO R, et al. A novel centrality method for weighted networks based on the Kirchhoff polynomial[J]. Pattern Recognition Letters, 2015, 58: 51-60. |