计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (11): 2430-2455.DOI: 10.3778/j.issn.1673-9418.2204004
兰浩良1,2, 李馥娟1,2, 王群1, 印杰1, 徐杰1, 洪磊1, 薛益时1, 夏明辉1,+()
收稿日期:
2022-04-02
修回日期:
2022-07-22
出版日期:
2022-11-01
发布日期:
2022-11-16
通讯作者:
+ E-mail: xiaminghui@jspi.cn作者简介:
兰浩良(1986—),男,山东德州人,博士,讲师,主要研究方向为网络安全、网络测量与行为学等。基金资助:
LAN Haoliang1,2, LI Fujuan1,2, WANG Qun1, YIN Jie1, XU Jie1, HONG Lei1, XUE Yishi1, XIA Minghui1,+()
Received:
2022-04-02
Revised:
2022-07-22
Online:
2022-11-01
Published:
2022-11-16
About author:
LAN Haoliang, born in 1986, Ph.D., lecturer. His research interests include network security, network measurement and behavior, etc.Supported by:
摘要:
匿名通信所具有的节点发现难、服务定位难、通信关系确认难以及用户监控难等特点使得架构在其之上的暗网中充斥着各种匿名滥用的违法犯罪活动。为此,学术界围绕匿名通信与暗网开展了系列有针对性的研究。相应地,在系统介绍匿名通信发展史、匿名机制和典型系统的基础上,重点结合匿名通信关键技术、匿名度量、匿名攻击、匿名增强、匿名通信性能评估与改善以及暗网空间综合治理等对该领域的相关研究进行梳理、总结和归纳。与此同时,聚焦并分析未来匿名通信研究的发展趋势以及暗网空间综合治理所面临的挑战与对策。
中图分类号:
兰浩良, 李馥娟, 王群, 印杰, 徐杰, 洪磊, 薛益时, 夏明辉. 匿名通信与暗网综合治理[J]. 计算机科学与探索, 2022, 16(11): 2430-2455.
LAN Haoliang, LI Fujuan, WANG Qun, YIN Jie, XU Jie, HONG Lei, XUE Yishi, XIA Minghui. Anonymous Communication and Darknet Space Comprehensive Governance[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2430-2455.
系统 | 时间 | 延迟 | 优势 | 劣势 |
---|---|---|---|---|
Tor | 2003 | 低 | 多层加密 适用于TCP 可很好地支持Web应用 良好的性能 使用范围广,用户保有量大 | 端到端加密无法保证 匿名性依赖节点选择算法 可扩展性不足 目录服务器较集中 电路交换会导致拥塞和延迟 |
I2P | 2003 | 低 | 多层/隧道/端到端加密 适用于UDP/TCP 良好的可扩展性 分组交换具有良好的负载均衡 适于文件共享 | 匿名性依赖节点选择算法 节点选择导致匿名性降低 |
Freenet | 2001 | 高 | 良好的可扩展性 高度的信息可用性 不易被恶意节点侵入 Pre-routing可提供良好的匿名性 | 基础版本中秘钥匿名性难以保证 消息传递缺乏有效保护 难以抵御DDOS攻击及目录攻击 |
NatCamo | 2001 | 低 | 伪装流量模式可抵御流量分析 保证实时应用的响应时间 | 易暴露主机位置/类型/网络拓扑 流量伪装导致QoS下降 未考虑主机和路由器的地理分布 恶意节点入侵 集中管理节点模式导致低安全性 局域网之外的性能难以保证 |
Tarzan | 2002 | 低 | 可扩展性强 自组织和完全的去中心化 高效的对等点发现机制 覆盖流量机制可抵御流量分析 完整性检查降低了信息泄露风险 合理的隧道延迟 较高的吞吐量与消息转发速率 | 应用层交互会导致信息泄露 应用层附加信息易被攻击者利用 缺乏应对恶意路由器有效机制 |
Crowds | 1998 | 低 | 发送者匿名性与消息转发次数成正比 接受者匿名的可能性与用户规模成正比 公私秘钥的加解密操作对性能影响较小 单次中断不会影响所有Web事务 一定程度的本地浏览行为的可否认性 | 本身不支持接受者匿名 加解密方案导致性能降低 下一跳方式的重路由影响匿名性 用户要充当匿名代理 不能有效抵御DDOS攻击 |
表2 典型匿名通信系统
Table 2 Typical anonymous communication systems
系统 | 时间 | 延迟 | 优势 | 劣势 |
---|---|---|---|---|
Tor | 2003 | 低 | 多层加密 适用于TCP 可很好地支持Web应用 良好的性能 使用范围广,用户保有量大 | 端到端加密无法保证 匿名性依赖节点选择算法 可扩展性不足 目录服务器较集中 电路交换会导致拥塞和延迟 |
I2P | 2003 | 低 | 多层/隧道/端到端加密 适用于UDP/TCP 良好的可扩展性 分组交换具有良好的负载均衡 适于文件共享 | 匿名性依赖节点选择算法 节点选择导致匿名性降低 |
Freenet | 2001 | 高 | 良好的可扩展性 高度的信息可用性 不易被恶意节点侵入 Pre-routing可提供良好的匿名性 | 基础版本中秘钥匿名性难以保证 消息传递缺乏有效保护 难以抵御DDOS攻击及目录攻击 |
NatCamo | 2001 | 低 | 伪装流量模式可抵御流量分析 保证实时应用的响应时间 | 易暴露主机位置/类型/网络拓扑 流量伪装导致QoS下降 未考虑主机和路由器的地理分布 恶意节点入侵 集中管理节点模式导致低安全性 局域网之外的性能难以保证 |
Tarzan | 2002 | 低 | 可扩展性强 自组织和完全的去中心化 高效的对等点发现机制 覆盖流量机制可抵御流量分析 完整性检查降低了信息泄露风险 合理的隧道延迟 较高的吞吐量与消息转发速率 | 应用层交互会导致信息泄露 应用层附加信息易被攻击者利用 缺乏应对恶意路由器有效机制 |
Crowds | 1998 | 低 | 发送者匿名性与消息转发次数成正比 接受者匿名的可能性与用户规模成正比 公私秘钥的加解密操作对性能影响较小 单次中断不会影响所有Web事务 一定程度的本地浏览行为的可否认性 | 本身不支持接受者匿名 加解密方案导致性能降低 下一跳方式的重路由影响匿名性 用户要充当匿名代理 不能有效抵御DDOS攻击 |
编号 | 算法 | 路由效率 | 路由表大小 | 拓扑结构 | 键值对位置 | 容错性 | 扩展性 | 负载均衡性 | 抗波动性 |
---|---|---|---|---|---|---|---|---|---|
1 | Chord | O(lbN) | O(lbN) | Ring | 后继节点 | 一般 | 好 | 不好 | 一般 |
2 | Pastry | O(lbN) | O(lbN) | Plaxton | 最近节点 | 较好 | 好 | 较好 | 一般 |
3 | Kademlia | O(K) | O(lbK) | Overlay | 最近K个节点 | 好 | 好 | 一般 | 好 |
表3 典型DHT查找策略
Table 3 Typical DHT lookup strategies
编号 | 算法 | 路由效率 | 路由表大小 | 拓扑结构 | 键值对位置 | 容错性 | 扩展性 | 负载均衡性 | 抗波动性 |
---|---|---|---|---|---|---|---|---|---|
1 | Chord | O(lbN) | O(lbN) | Ring | 后继节点 | 一般 | 好 | 不好 | 一般 |
2 | Pastry | O(lbN) | O(lbN) | Plaxton | 最近节点 | 较好 | 好 | 较好 | 一般 |
3 | Kademlia | O(K) | O(lbK) | Overlay | 最近K个节点 | 好 | 好 | 一般 | 好 |
关键技术 | 描述 | 相关研究 | ||
---|---|---|---|---|
可访问性 | 保障匿名通信网络可访问性及匿名用户隐私的抗审查技术与架构 | [ | ||
匿名路由 | 洋葱路由 | 匿名路由协议的路由特性及其性能 | 洋葱路由策略的扩展 | [ |
DHT | 查找策略优化 | [ | ||
DC-Net | 协议效率、可扩展性、安全性 | [ | ||
大蒜路由 | I2P匿名性、安全性、性能 | [ | ||
隐藏服务 | 大规模隐藏服务发现、分析与提升 | [ |
表4 匿名通信关键技术
Table 4 Anonymous communication key technologies
关键技术 | 描述 | 相关研究 | ||
---|---|---|---|---|
可访问性 | 保障匿名通信网络可访问性及匿名用户隐私的抗审查技术与架构 | [ | ||
匿名路由 | 洋葱路由 | 匿名路由协议的路由特性及其性能 | 洋葱路由策略的扩展 | [ |
DHT | 查找策略优化 | [ | ||
DC-Net | 协议效率、可扩展性、安全性 | [ | ||
大蒜路由 | I2P匿名性、安全性、性能 | [ | ||
隐藏服务 | 大规模隐藏服务发现、分析与提升 | [ |
序号 | 类别 | 描述 | 难点 | 相关研究 |
---|---|---|---|---|
1 | 暗网用户识别与定位 | 暗网用户身份识别与行为分析 | 暗网用户及身份行为的体系化认知 | [ |
2 | 隐藏服务发现 | 服务类型识别与溯源 | 隐藏服务的规模、普及率、可用性 | [ |
3 | 暗网内容及拓扑结构分析 | 暗网的构成、用途及用户行为 | 暗网的构成、用途及用户行为 | [ |
4 | 暗网节点发现 | 防止匿名滥用 | 快速、有效的暗网节点发现方法 | [ |
5 | 暗网流量识别与检测 | 防止匿名滥用 | 易于部署的暗网流量识别与监测方法 | [ |
6 | 暗网电子数据取证 | 搜集暗网犯罪证据 | 良好的取证框架、技术和工具 | [ |
7 | 暗网空间资源测绘 | 资源要素及用户行为 | 暗网规模、演化规律等的挖掘与分析 | [ |
表5 暗网综合治理技术
Table 5 Darknet governance technologies
序号 | 类别 | 描述 | 难点 | 相关研究 |
---|---|---|---|---|
1 | 暗网用户识别与定位 | 暗网用户身份识别与行为分析 | 暗网用户及身份行为的体系化认知 | [ |
2 | 隐藏服务发现 | 服务类型识别与溯源 | 隐藏服务的规模、普及率、可用性 | [ |
3 | 暗网内容及拓扑结构分析 | 暗网的构成、用途及用户行为 | 暗网的构成、用途及用户行为 | [ |
4 | 暗网节点发现 | 防止匿名滥用 | 快速、有效的暗网节点发现方法 | [ |
5 | 暗网流量识别与检测 | 防止匿名滥用 | 易于部署的暗网流量识别与监测方法 | [ |
6 | 暗网电子数据取证 | 搜集暗网犯罪证据 | 良好的取证框架、技术和工具 | [ |
7 | 暗网空间资源测绘 | 资源要素及用户行为 | 暗网规模、演化规律等的挖掘与分析 | [ |
[1] | SIMIONI M. Investigative techniques for the de-anonymiza-tion of hidden services[J]. IEEE Security & Privacy, 2021, 19(2): 60-64. |
[2] | ADEWOPO V, GONEN B, VARLIOGLU S, et al. Plunge into the underworld: a survey on emergence of darknet[C]// Proceedings of the 2019 International Conference on Compu-tational Science and Computational Intelligence, Las Vegas, Dec 5-7, 2019. Piscataway: IEEE, 2019: 155-159. |
[3] | NIA M A, RUIZ-MARTINEZ A. Systematic literature review on the state of theart and future research work in anony-mous communications systems[J]. Computers & Electrical Engineering, 2018, 69(C): 497-520. |
[4] | FACHKHA C, DEBBABI M. Darknet as a source of cyber intelligence: survey, taxonomy, and characterization[J]. IEEE Communications Surveys & Tutorials, 2015, 18(2): 1197-1227. |
[5] | BIAN J, CAO C, WANG L, et al. Tor hidden services dis-covery and analysis: a literature survey[J]. Journal of Phy-sics: Conference Series, 2021, 1757(1): 012162. |
[6] | SHIRAZI F, SIMEONOVSKI M, ASGHAR M R, et al. A survey on routing in anonymous communication protocols[J]. ACM Computing Surveys, 2018, 51(3): 1-39. |
[7] |
CHAUM D L. Untraceable electronic mail, return addresses, and digital pseudonyms[J]. Communications of the ACM, 1981, 24(2): 84-90.
DOI URL |
[8] | REITER M K, RUBIN A D. Crowds: anonymity for Web transactions[J]. ACM Transactions on Information and Sys-tem Security, 1998, 1(1): 66-92. |
[9] |
GRASSMAN R, BRACAMONTE V, DAVIS M, et al. Atti-tudes to cryptocurrencies: a comparative study between Swe-den and Japan[J]. The Review of Socionetwork Strategies, 2021, 15(1): 169-194.
DOI URL |
[10] | EDMAN M, YENER B. On anonymity in an electronic society: a survey of anonymous communication systems[J]. ACM Computing Surveys, 2009, 42(1): 1-35. |
[11] | DANEZIS G, DINGLEDINE R, MATHEWSON N. Mix-Minion: design of a type III anonymous remailer protocol[C]// Proceedings of the 2003 Symposium on Security and Privacy, Berkeley, May 11-14, 2003. Piscataway: IEEE, 2003: 2-15. |
[12] | YU S, ZHAO G, DOU W, et al. Predicted packet padding for anonymous Web browsing against traffic analysis attacks[J]. IEEE Transactions on Information Forensics and Secu-rity, 2012, 7(4): 1381-1393. |
[13] | GOLDSCHLAG D, REED M, SYVERSON P. Onion routing[J]. Communications of the ACM, 1999, 42(2): 39-41. |
[14] | SIMMONS G J. The prisoners’ problem and the subliminal channel[C]// CHAUM D. Advances in Cryptology. Berlin, Heidelberg: Springer, 1984: 51-67. |
[15] | SHEN Y, YANG W, HUANG L. Concealed in Web surfing: behavior-based covert channels in HTTP[J]. Journal of Net-work and Computer Applications, 2018, 101: 83-95. |
[16] | FEAMSTER N, BALAZINSKA M, HARFST G, et al. Infra-net: circumventing Web censorship and surveillance[C]// Proceedings of the CRYPTO’83 Advances in Cryptology, Santa Barbara, Aug 21-24, 1983. Berlin, Heidelberg: Springer, 1984: 51-67. |
[17] | CHOURIB M, WENDZEL S, MAZURCZYK W, et al. Adap-tive warden strategy for countering network covert storage channels[C]// Proceedings of the 46th IEEE Conference on Local Computer Networks, Edmonton, Oct 4-7, 2021. Pisca-taway: IEEE, 2021: 148-153. |
[18] | KOHLWEISS M, MADATHIL V, NAYAK K, et al. On the anonymity guarantees of anonymous proof-of-stake proto-cols[C]// Proceedings of the 2021 IEEE Symposium on Secu-rity and Privacy, San Francisco, May 24-27, 2021. Piscata-way: IEEE, 2021: 1818-1833. |
[19] | BUCCAFURRI F, DE ANGELIS V, IDONE M F, et al. Wip: an onion-based routing protocol strengthening anony-mity[C]// Proceedings of the 22nd IEEE International Sym-posium on a World of Wireless, Mobile and Multimedia Net-works, Pisa, Jun 7-11, 2021. Piscataway: IEEE, 2021: 231-235. |
[20] |
LU T, DU Z, WANG Z J. A survey on measuring anonymity in anonymous communication systems[J]. IEEE Access, 2019, 7: 70584-70609.
DOI |
[21] | BASYONI L M. Enhancing the performance and security of anonymous communication networks[D]. Doha: Qatar Univer-sity, 2022. |
[22] | LING Z, LUO J, YU W, et al. Tor bridge discovery: extensive analysis and large-scale empirical evaluation[J]. IEEE Tran-sactions on Parallel and Distributed Systems, 2013, 26(7): 1887-1899. |
[23] | DUTTA N, JADAV N, TANWAR S, et al. DarkNet and hid-den services: cyber security: issues and current trends[M]. Berlin, Heidelberg: Springer, 2022: 57-69. |
[24] |
JAVIDBAKHT O, VENKITASUBRAMANIAM P. Delay anonymity tradeoff in mix networks: optimal routing[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 1162-1175.
DOI URL |
[25] |
CHAUM D. The dining cryptographers problem: unconditional sender and recipient untraceability[J]. Journal of Cryptology, 1988, 1(1): 65-75.
DOI URL |
[26] | SIRER E G, POLTE M, ROBSON M, et al. Cliquenet: a self-organizing, scalable, peer-to-peer anonymous commu-nication substrate[EB/OL]. [2022-01-12]. https://www.cs.co-rnell.edu/people/egs/papers/cliquenet-iptp.pdf. |
[27] | SARDROUD A A, DOUSTI M S, JALILI R. An efficient DC-net based anonymous message transmission protocol[C]// Proceedings of the 6th International ISC Conference on Information Security and Cryptology, Esfahan, Dec 2-4, 2009. Berlin, Heidelberg: Springer, 2009: 23-30. |
[28] | REN J, LI T, LI Y. Anonymous communications in overlay networks[C]// Proceedings of the 2008 IEEE Military Commu-nications Conference, San Diego, Nov 16-19, 2008. Piscata-way: IEEE, 2008: 1-6. |
[29] |
HARATY R A, ZANTOUT B. The TOR data communica-tion system[J]. Journal of Communications and Networks, 2014, 16(4): 415-420.
DOI URL |
[30] | BAZLI B, WILSON M, HURST W. The dark side of I2P, a forensic analysis case study[J]. Systems Science & Control Engineering, 2017, 5(1): 278-286. |
[31] | CLARKE I, SANDBERG O, WILEY B, et al. Freenet: a distributed anonymous information storage and retrieval sys-tem[C]// Proceedings of the 2000 International Workshop on Design Issues in Anonymity and Unobservability, Berkeley, Jul 25-26, 2000. Berlin, Heidelberg: Springer, 2000: 46-66. |
[32] | GUAN Y, FU X, XUAN D, et al. NetCamo: camouflaging network traffic for qos-guaranteed mission critical applica-tions[J]. IEEE Transactions on Systems, Man, and Cyber-netics-Part A: Systems and Humans, 2001, 31(4): 253-265. |
[33] | FREEDMAN M J, MORRIS R. Tarzan: a peer-to-peer anon-ymizing network layer[C]// Proceedings of the 9th ACM Con-ference on Computer and Communications Security, Washing-ton, Nov 18-22, 2002. New York: ACM, 2002: 193-206. |
[34] | REITER M K, RUBIN A D. Anonymous Web transactions with crowds[J]. Communications of the ACM, 1999, 42(2): 32-48. |
[35] | KWON A H, LAZAR D, DEVADAS S, et al. Riffle: an efficient communication system with strong anonymity[J]. Privacy Enhancing Technologies, 2016(2): 115-134. |
[36] | ZHU T, FENG D, HUA Y, et al. Mic: an efficient anonymous communication system in data center networks[C]// Procee-dings of the 2016 International Conference on Parallel Proces-sing, Philadelphia, Aug 16-19, 2016. Piscataway: IEEE, 2016: 11-20. |
[37] | WEI H, BAI G, LUO Z. Foggy: a new anonymous commu-nication architecture based on microservices[C]// Proceedings of the 2020 International Conference on Engineering of Complex Computer Systems, Singapore, Oct 28-31, 2020. Piscataway: IEEE, 2020: 135-144. |
[38] | ENSAFI R, FIFIELD D, WINTER P, et al. Examining how the great firewall discovers hidden circumvention servers[C]// Proceedings of the 2015 Internet Measurement Conference, Tokyo, Oct 28-30, 2015. New York: ACM, 2015: 445-458. |
[39] | FROLOV S, WAMPLER J, TAN S C, et al. Conjure: sum-moning proxies from unused address space[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-munications Security, London, Nov 11-15, 2019. New York: ACM, 2019: 2215-2229. |
[40] | BOCK K, HUGHEY G, QIANG X, et al. Geneva: evolving censorship evasion strategies[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-tions Security, London, Nov 11-15, 2019. New York: ACM, 2019: 2199-2214. |
[41] | WUSTROW E, WOLCHOK S, GOLDBERG I, et al. Telex: anticensorship in the network infrastructure[C]// Proceedings of the USENIX Security Symposium, San Francisco, Aug 8-12, 2011. Berkeley: USENIX, 2011: 30-45. |
[42] | BRUBAKER C, HOUMANSADR A, SHMATIKOV V. Cloud-transport: using cloud storage for censorship-resistant net-working[C]// Proceedings of the 2014 International Sympo-sium on Privacy Enhancing Technologies Symposium, Ams-terdam, Jul 16-18, 2014. Cham: Springer, 2014: 1-20. |
[43] | ZAMANI M, SAIA J, CRANDALL J. TorBricks: blocking-resistant Tor bridge distribution[C]// Proceedings of the 2017 International Symposium on Stabilization, Safety, and Security of Distributed Systems, Boston, Nov 5-8, 2017. Cham: Sprin-ger, 2017: 426-440. |
[44] | DYER K P, COULL S E, SHRIMPTON T. Marionette: a progra-mmable network traffic obfuscation system[C]// Proceedings of the 24th USENIX Security Symposium, Washington, Aug 12-14, 2015. Berkeley: USENIX, 2015: 367-382. |
[45] | WEINBERG Z, WANG J, YEGNESWARAN V, et al. Stego-Torus: a camouflage proxy for the Tor anonymity system[C]// Proceedings of the 2012 ACM Conference on Com-puter and Communications Security, Raleigh, Oct 16-18, 2012. New York: ACM, 2012: 109-120. |
[46] | LUCHAUP D, DYER K P, JHA S, et al. LibFTE: a toolkit for constructing practical format-abiding encryption schemes[C]// Proceedings of the 23rd USENIX Security Symposium, San Diego, Aug 20-22, 2014. Berkeley: USENIX, 2014: 877-891. |
[47] | WANG Q, GONG X, NGUYEN G T K, et al. Censors-poofer: asymmetric communication using IP spoofing for censorship-resistant Web browsing[C]// Proceedings of the 2012 ACM Conference on Computer and Communications Security, New York, Oct 16-18, 2012. New York: ACM, 2012: 121-132. |
[48] | SYVERSON P, TSUDIK G, REED M, et al. Towards an analysis of onion routing security[C]// Proceeedings of the 2001 International Workshop on Design Issues in Anony-mity and Unobservability, Berkeley, Jul 25-26, 2001. Berlin, Heidelberg: Springer, 2001: 96-114. |
[49] | BACKES M, KATE A, MEISER S, et al. (Nothing else) MATor (s) monitoring the anonymity of Tor’s path selection[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale Arizona, Nov 3-7, 2014. New York: ACM, 2014: 513-524. |
[50] | DE LA CADENA RAMOS A W. Multipath routing on anon-ymous communication systems: enhancing privacy and per-formance[D]. Luxembourg: University of Luxembourg, 2021. |
[51] | WAN S. Topology hiding routing based on learning with errors[J]. Concurrency and Computation: Practice and Expe-rience, 2020: e5740. |
[52] | XIA Y, CHEN R, SU J, et al. Hybrid routing: towards resi-lient routing in anonymous communication networks[C]// Proceedings of the 2020 IEEE International Conference on Communications, Dublin, Jun 7-11, 2020. Piscataway: IEEE, 2020: 1-7. |
[53] | MITSEVA A, ALEKSANDROVA M, ENGEL T, et al. Secu-rity and performance implications of BGP rerouting-resis-tant guard selection algorithms for Tor[C]// Proceedings of the 2020 IFIP International Conference on ICT Systems Security and Privacy Protection. Cham: Springer, 2020: 219-233. |
[54] | CHAUHAN M, SINGH A K. Survey of onion routing app-roaches: advantages, limitations and future scopes[C]// Procee-dings of the 2019 International Conference on Computer Networks, Big Data and IoT, Madurai, Dec 19-20, 2019. Cham: Springer, 2019: 686-697. |
[55] | MAYMOUNKOV P, MAZIERES D. Kademlia: a peer-to-peer information system based on the Xor metric[C]// Procee-dings of the 2002 International Workshop on Peer-to-Peer Systems, Cambridge, Mar 7-8, 2002. Berlin, Heidelberg: Sprin-ger, 2002: 53-65. |
[56] |
STOICA I, MORRIS R, LIBEN-NOWELL D, et al. Chord: a scalable peer-to-peer lookup protocol for internet applica-tions[J]. IEEE/ACM Transactions on Networking, 2003, 11(1): 17-32.
DOI URL |
[57] | ROWSTRON A, DRUSCHEL P. Pastry:scalable, decentra-lized object location, and routing for large-scale peer-to-peer systems[C]// Proceedings of the 2001 IFIP/ACM Inter-national Conference on Distributed Systems Platforms and Open Distributed Processing, Heidelberg, Nov 12-16, 2001. Berlin, Heidelberg: Springer, 2001: 329-350. |
[58] |
OWENSON G, CORTES S, LEWMAN A. The darknet’s smaller than we thought: the life cycle of Tor hidden servi-ces[J]. Digital Investigation, 2018, 27: 17-22.
DOI URL |
[59] | MCLACHLAN J, TRAN A, HOPPER N, et al. Scalable onion routing with torsk[C]// Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, Nov 9-13, 2009. New York: ACM, 2009: 590-599. |
[60] |
RUSLAN R, ZAILANI A S M, ZUKRI N H M, et al. Rou-ting performance of structured overlay in distributed Hash tables (DHT) for P2P[J]. Bulletin of Electrical Engineering and Informatics, 2019, 8(2): 389-395.
DOI URL |
[61] | GOEL S, ROBSON M, POLTE M, et al. Herbivore: a sca-lable and efficient protocol for anonymous communication: TR2003-1890[R]. Ithaca: Cornell University, 2003. |
[62] | CORRIGAN-GIBBS H, FORD B. Dissent: accountable ano-nymous group messaging[C]// Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, Oct 4-8, 2010. New York: ACM, 2010: 340-350. |
[63] | ABRAHAM I, PINKAS B, YANAI A. Blinder-scalable, robust anonymous committed broadcast[C]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communica-tions Security, Reiter, Nov 9-13, 2020. New York: ACM, 2020: 1233-1252. |
[64] | NOSOUHI M R, YU S, SOOD K, et al. HSDC-Net: secure anonymous messaging in online social networks[C]// Procee-dings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering, Rotorua, Aug 5-8, 2019. Piscataway: IEEE, 2019: 350-357. |
[65] | GRIGG J. Looking for group: open research questions about I2P[C]// Proceedings of 10th Workshop on Hot Topics in Privacy Enhancing Technologies, Minneapolis, Jul 18-21, 2017. Cham: Springer, 2017. |
[66] | TIMPANARO J P, CHOLEZ T, CHRISMENT I, et al. Eva-luation of the anonymous I2P network’s design choices aga-inst performance and security[C]// Proceedings of the 2015 International Conference on Information Systems Security and Privacy, Angers, Feb 9-11, 2015. Piscataway: IEEE, 2015: 1-10. |
[67] | LIU P, WANG L, TAN Q, et al. Empirical measurement and analysis of I2P routers[J]. Journal of Networks, 2014, 9(9): 2269. |
[68] | GAO Y, TAN Q, SHI J, et al. Large-scale discovery and empi-rical analysis for I2P eepSites[C]// Proceedings of the 2017 IEEE Symposium on Computers and Communications, Hera-klion, Jul 3-6, 2017. Piscataway: IEEE, 2017: 444-449. |
[69] | DIAB T, GILG M, DROUHIN F, et al. Anonymizing com-munication in VANets by applying I2P mechanisms[C]// Proceedings of 2019 IEEE Global Communications Confe-rence, Waikoloa, Dec 9-13, 2019. Piscataway: IEEE, 2019: 1-6. |
[70] | BIRYUKOV A, PUSTOGAROV I, THILL F, et al. Content and popularity analysis of Tor hidden services[C]// Procee-dings of the 34th International Conference on Distributed Computing Systems Workshops, Madrid, Jun 30-Jul 3, 2014. Piscataway: IEEE, 2014: 188-193. |
[71] | BIRYUKOV A, PUSTOGAROV I, WEINMANN R P. Traw-ling for Tor hidden services: detection, measurement, deano-nymization[C]// Proceedings of the 2013 IEEE Symposium on Security and Privacy, Berkeley, May 19-22, 2013. Pisca-taway: IEEE, 2013: 80-94. |
[72] | KWON A, ALSABAH M, LAZAR D, et al. Circuit finger-printing attacks: passive deanonymization of Tor hidden services[C]// Proceedings of 24th USENIX Security Sympo-sium, Austin, Aug 10-12, 2015. Berkeley: USENIX, 2015: 287-302. |
[73] | LOESING K, SANDMANN W, WILMS C, et al. Perfor-mance measurements and statistics of Tor hidden services[C]// Proceedings of the 2008 International Symposium on Applications and the Internet, Turku, Jul 28-Aug 1, 2008. Piscataway: IEEE, 2008: 1-7. |
[74] | NAIR V, KANNIMOOLA J M. A tool to extract onion links from Tor hidden services and identify illegal activities[M]. Singapore: Springer, 2022: 29-37. |
[75] | AL JAWAHERI H, AL SABAH M, BOSHMAF Y, et al. Dea-nonymizing Tor hidden service users through bitcoin transac-tions analysis[J]. Computers & Security, 2020, 89: 101684. |
[76] | ØVERLIER L, SYVERSON P. Valet services: improving hidden servers with a personal touch[C]// Proceedings of the 2006 International Workshop on Privacy Enhancing Techno-logies. Berlin, Heidelberg: Springer, 2006: 223-244. |
[77] | LIANG J, LIU Y. An improved method to build a circuit of Tor hidden service[C]// Proceedings of the 2018 International Conference on Automation, Mechanical Control and Com-putational Engineering, Dalian, May 12, 2018. Paris: Atlantis Press, 2018: 12-14. |
[78] | PFITZMANN A, KÖHNTOPP M. Anonymity, unobserva-bility, and pseudonymity—a proposal for terminology[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 1-9. |
[79] | DINGLEDINE R, FREEDMAN M J, MOLNAR D. The free haven project: distributed anonymous storage service[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 67-95. |
[80] | BERTHOLD O, PFITZMANN A, STANDTKE R. The dis-advantages of free MIX routes and how to overcome them[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 30-45. |
[81] | SHIELDS C, LEVINE B N. A protocol for anonymous com-munication over the Internet[C]// Proceedings of the 7th ACM Conference on Computer and Communications Security, Athens, Nov 1-4, 2000. New York: ACM, 2000: 33-42. |
[82] | SERJANTOV A, DANEZIS G. Towards an information theo-retic metric for anonymity[C]// Proceedings of the 2002 Inter-national Workshop on Privacy Enhancing Technologies, Apr 14-15, 2002. Berlin, Heidelberg: Springer, 2002: 41-53. |
[83] | SHMATIKOV V, WANG M H. Measuring relationship anon-ymity in mix networks[C]// Proceedings of the 5th ACM Workshop on Privacy in Electronic Society, Virginia, Oct 30, 2006. New York: ACM, 2006: 59-62. |
[84] | WAILS R, SUN Y, JOHNSON A, et al. Tempest: temporal dynamics in anonymity systems[J]. Privacy Enhancing Tech-nologies, 2018, 3: 22-42. |
[85] | KUHN C, BECK M, SCHIFFNER S, et al. On privacy notions in anonymous communication[J]. Privacy Enhancing Tech-nologies, 2019, 2: 105-125. |
[86] | TYAGI N, GILAD Y, LEUNG D, et al. Stadium: a distri-buted metadata-private messaging system[C]// Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, Oct 28, 2017. New York: ACM, 2017: 423-440. |
[87] | LEVINE B N, REITER M K, WANG C, et al. Timing attacks in low-latency mix-based systems[C]// LNCS 3110: Proceedings of the 2004 International Conference on Fina-ncial Cryptography, Key West, Feb 9-12, 2004. Berlin, Hei-delberg: Springer, 2004: 251-265. |
[88] | MURDOCH S J, DANEZIS G. Low-cost traffic analysis of Tor[C]// Proceedings of the 2005 IEEE Symposium on Secu-rity and Privacy, Oakland, May 8-11, 2005. Piscataway: IEEE, 2005: 183-195. |
[89] | WIANGSRIPANAWAN R, SUSILO W, SAFAVI-NAINI R. Design principles for low latency anonymous network sys-tems secure against timing attacks[C]// Proceedings of the 5th Australasian Symposium on ACSW Frontiers, Ballarat, Jan 30, 2007. New York: ACM, 2007: 183-191. |
[90] | CAMBIASO E, VACCARI I, PATTI L, et al. Darknet secu-rity: a categorization of attacks to the Tor network[C]// Proceedings of the 3rd Italian Conference on Cyber Secu-rity, Pisa, Feb 13-15, 2019: 1-12. |
[91] | BACKES M, MANOHARAN P, MOHAMMADI E. Tuc: time-sensitive and modular analysis of anonymous commu-nication[C]// Proceedings of the 27th Computer Security Foun-dations Symposium, Vienna, Jul 19-22, 2014. Piscataway: IEEE, 2014: 383-397. |
[92] | YANG M, GU X, LING Z, et al. An active de-anonymizing attack against Tor Web traffic[J]. Tsinghua Science and Tech-nology, 2017, 22(6): 702-713. |
[93] | BASYONI L, FETAIS N, ERBAD A, et al. Traffic analysis attacks on Tor: a survey[C]// Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, Doha, Feb 2-5, 2020. Piscataway: IEEE, 2020: 183-188. |
[94] |
XU G, LIU J, LU Y, et al. A novel efficient MAKA protocol with desynchronization for anonymous roaming service in global mobility networks[J]. Journal of Network and Computer Applications, 2018, 107: 83-92.
DOI URL |
[95] | PULLS T, DAHLBERG R. Website fingerprinting with Web-site oracles[J]. Proceedings on Privacy Enhancing Techno-logies, 2020(1): 235-255. |
[96] |
ATTARIAN R, ABDI L, HASHEMI S. AdaWFPA: adaptive online website fingerprinting attack for Tor anonymous net-work: a stream-wise paradigm[J]. Computer Communications, 2019, 148: 74-85.
DOI URL |
[97] | CHERUBIN G, JANSEN R, TRONCOSO C. Online website fingerprinting: evaluating website fingerprinting attacks on Tor in the real world[C]// Proceedings of the 2022 USENIX Security Symposium, Boston, Aug 10-12, 2022. Berkeley: USENIX, 2002. |
[98] | CUI W, CHEN T, FIELDS C, et al. Revisiting assumptions for website fingerprinting attacks[C]// Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Auckland, Jul 9-12, 2019. New York: ACM, 2019: 328-339. |
[99] | SIRINAM P, IMANI M, JUAREZ M, et al. Deep finger-printing: undermining website fingerprinting defenses with deep learning[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toro-nto, Oct 15-19, 2018. New York: ACM, 2018: 1928-1943. |
[100] | ZHUO Z, ZHANG Y, ZHANG Z, et al. Website finger-printing attack on anonymity networks based on profile hidden Markov model[J]. IEEE Transactions on Information Foren-sics and Security, 2017, 13(5): 1081-1095. |
[101] | DE LA CADENA W, MITSEVA A, HILLER J, et al. Traffic-sliver: fighting website fingerprinting attacks with traffic splitting[C]// Proceedings of the 2020 ACM SIGSAC Confe-rence on Computer and Communications Security. New York: ACM, 2020: 1971-1985. |
[102] |
WRIGHT M K, ADLER M, LEVINE B N, et al. The prede-cessor attack: an analysis of a threat to anonymous com-munications systems[J]. ACM Transactions on Information and System Security, 2004, 7(4): 489-522.
DOI URL |
[103] | GE K, HE Y. Detection of Sybil attack on Tor resource dis-tribution[C]// Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems, Shenyang, Jul 28-30, 2020. Piscataway: IEEE, 2020: 328-332. |
[104] | BARTON A, WRIGHT M. DeNASA: destination-naive AS-awareness in anonymous communications[J]. Proceedings on Privacy Enhancing Technologies, 2016(4): 356-372. |
[105] | TABRIZ P, BORISOV N. Breaking the collusion detection mechanism of MorphMix[C]// Proceedings of the 2006 Inter-national Workshop on Privacy Enhancing Technologies, Cambridge, Jun 28-30, 2006. Berlin, Heidelberg: Springer, 2006: 368-383. |
[106] | JANSEN R, TSCHORSCH F, JOHNSON A, et al. The sniper attack: anonymously deanonymizing and disabling the Tor network[C]// Proceedings of the 21st Annual Network and Distributed System Security Symposium, San Diego, Feb 23-26, 2014. Reston: ISOC, 2014: 1-15. |
[107] | JANSEN R, VAIDYA T, SHERR M. Point break: a study of bandwidth denial-of-service attacks against Tor[C]// Procee-dings of the 28th USENIX Security Symposium, Santa Clara, Aug 14-16, 2019. Berkeley: USENIX, 2019: 1823-1840. |
[108] | MANE Y D, KHOT U P. An efficient technique to detect slow rate DDoS attack from a private Tor network[J]. Inter-national Journal of Electronic Security and Digital Foren-sics, 2021, 13(1): 88-104. |
[109] |
XIA Y, CHEN R, SU J, et al. Balancing anonymity and resi-lience in anonymous communication networks[J]. Computers & Security, 2021, 101: 102106.
DOI URL |
[110] | BOUSSADA R, ELHDHILI M E, SAIDANE L A. A survey on privacy: terminology, mechanisms and attacks[C]// Procee-dings of the 13th International Conference on Computer Sys-tems and Applications, Agadir, Nov 29-Dec 1, 2016. Pisca-taway: IEEE, 2016: 1-7. |
[111] | DANEZIS G, SASSAMAN L. Heartbeat traffic to counter (n-1) attacks: red-green-black mixes[C]// Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, Washington, Oct 30, 2003. New York: ACM, 2003: 89-93. |
[112] | PIOTROWSKA A M, HAYES J, ELAHI T, et al. The loopix anonymity system[C]// Proceedings of the 26th USENIX Security Symposium, Vancouver, Aug 16-18, 2017. Berkeley: USENIX, 2017: 1199-1216. |
[113] | CONRAD B, SHIRAZI F. A survey on Tor and I2P[C]// Proceedings of the 9th International Conference on Internet Monitoring and Protection, Paris, Jul 20-24, 2014. Wilmin-gton: IARIA XPS, 2014: 22-28. |
[114] | RIES T, PANCHENKO A, ENGEL T. Comparison of low-latency anonymous communication systems-practical usage and performance[C]// Proceedings of the 9th Australasian Information Security Conference, Perth, Jan 17-20, 2011. Darlinghurst: ACS, 2011: 77-86. |
[115] | HOANG N P, KINTIS P, ANTONAKAKIS M, et al. An empi-rical study of the I2P anonymity network and its censor-ship resistance[C]// Proceedings of the 2018 Internet Measure-ment Conference, Boston, Oct 31-Nov 2, 2018. New York: ACM, 2018: 379-392. |
[116] | KIRAN K, SAURABH S, USMAN M, et al. Anonymity and performance analysis of stream isolation in Tor network[C]// Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies, Kanpur, Jul 6-8, 2019. Piscataway: IEEE, 2019: 1-6. |
[117] | CUSTURA A, LEARMONTH I, FAIRHURST G. Measu-ring mobile performance in the Tor network with Onion-Perf[C]// Proceedings of the 2019 Network Traffic Measure-ment and Analysis Conference, Paris, Jun 19-21, 2019. Pisca-taway: IEEE, 2019: 233-238. |
[118] | KUHN C, KITZING F, STRUFE T. Sok on performance bounds in anonymous communication[C]// Proceedings of the 19th Workshop on Privacy in the Electronic Society. New York: ACM, 2020: 21-39. |
[119] | PANCHENKO A, LANZE F, ENGEL T. Improving perfor-mance and anonymity in the Tor network[C]// Proceedings of the 31st International Performance Computing and Commu-nications Conference, Austin, Dec 1-3, 2012. Piscataway: IEEE, 2012: 1-10. |
[120] |
SANGEETHA K, RAVIKUMAR K. A novel traffic dividing and scheduling mechanism for enhancing ssecurity and perfor-mance in the Tor network[J]. Indian Journal of Science and Technology, 2015, 8(7): 689.
DOI URL |
[121] | BARTON A, WRIGHT M, MING J, et al. Towards predic-ting efficient and anonymous Tor circuits[C]// Proceedings of the 27th USENIX Security Symposium, Baltimore, Aug 15-17, 2018. Berkeley: USENIX, 2018: 429-444. |
[122] |
GIRRY K T, OHZAHATA S, WU C, et al. Reducing congestion in the Tor network with circuit switching[J]. Journal of Information Processing, 2015, 23(5): 589-602.
DOI URL |
[123] | TANG C, GOLDBERG I. An improved algorithm for Tor circuit scheduling[C]// Proceedings of the 17th ACM Confe-rence on Computer and Communications Security, Chicago, Oct 4-8, 2010. New York: ACM, 2010: 329-339. |
[124] | CRENSHAW A. Darknets and hidden servers: identifying the true IP/network identity of I2P service hosts[J]. Black Hat DC, 2011, 201(1): 1-23. |
[125] | MATIC S, KOTZIAS P, CABALLERO J. Caronte: detec-ting location leaks for deanonymizing Tor hidden services[C]// Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications Security, Denver, Oct 12-16, 2015. New York: ACM, 2015: 1455-1466. |
[126] | SANATINIA A, NOUBIR G. Honey onions: a framework for characterizing and identifying misbehaving Tor HSDirs[C]// Proceedings of the 2016 IEEE Conference on Communi-cations and Network Security, Philadelphia, Oct 17-19, 2016. Piscataway: IEEE, 2016: 127-135. |
[127] | SANCHEZ-ROLA I, BALZAROTTI D, SANTOS I. The onions have eyes: a comprehensive structure and privacy analysis of Tor hidden services[C]// Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1251-1260. |
[128] | SOSKA K, CHRISTIN N. Measuring the longitudinal evo-lution of the online anonymous marketplace ecosystem[C]// Proceedings of the 24th USENIX Security Symposium, Was-hington, Aug 12-14, 2015. Berkeley: USENIX, 2015: 33-48. |
[129] | CHRISTIN N. Traveling the Silk Road: a measurement anal-ysis of a large anonymous online marketplace[C]// Procee-dings of the 22nd International Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 213-224. |
[130] | GHOSH S, DAS A, PORRAS P, et al. Automated catego-rization of onion sites for analyzing the darkweb ecosystem[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Hali-fax, Aug 13-17, 2017. New York: ACM, 2017: 1793-1802. |
[131] | BERNASCHI M, CELESTINI A, GUARINO S, et al. Exp-loring and analyzing the Tor hidden services graph[J]. ACM Transactions on the Web, 2017, 11(4): 1-26. |
[132] | WANG X, SHI J, FANG B, et al. An empirical analysis of family in the Tor network[C]// Proceedings of the 2013 IEEE International Conference on Communications, Budapest, Jun 9-13, 2013. Piscataway: IEEE, 2013: 1995-2000. |
[133] | WINTER P, ENSAFI R, LOESING K, et al. Identifying and characterizing Sybils in the Tor network[C]// Proceedings of the 25th USENIX Security Symposium, Austin, Aug 10-12, 2016. Berkeley: USENIX, 2016: 1169-1185. |
[134] | HE G, YANG M, GU X, et al. A novel active website finger-printing attack against Tor anonymous system[C]// Procee-dings of the 18th International Conference on Computer Supported Cooperative Work in Design, Hsinchu, May 21-23, 2014. Piscataway: IEEE, 2014: 112-117. |
[135] | WANG T, CAI X, NITHYANAND R, et al. Effective attacks and provable defenses for website fingerprinting[C]// Procee-dings of the 23rd USENIX Security Symposium, San Diego, Aug 20-22, 2014. Berkeley: USENIX, 2014: 143-157. |
[136] | WANG T, GOLDBERG I. On realistically attacking Tor with website fingerprinting[J]. Proceedings on Privacy Enhan-cing Technologies, 2016(4): 21-36. |
[137] | HERRMANN D, WENDOLSKY R, FEDERRATH H. Web-site fingerprinting: attacking popular privacy enhancing tech-nologies with the multinomial naïve-Bayes classifier[C]// Proceedings of the 2009 ACM Workshop on Cloud Com-puting Security, Chicago, Nov 13, 2009. New York: ACM, 2009: 31-42. |
[138] | SPITTERS M, KLAVER F, KOOT G, et al. Authorship anal-ysis on dark marketplace forums[C]// Proceedings of the 2015 European Intelligence and Security Informatics Conference, Manchester, Sep 7-9, 2015. Piscataway: IEEE, 2015: 1-8. |
[139] | TIMPANARO J P, CHRISMENT I, FESTOR O. A bird’s eye view on the I2P anonymous file-sharing environment[C]// Proceedings of the 2012 International Conference on Network and System Security, Wuyishan, Nov 21-23, 2012. Berlin, Heidelberg: Springer, 2012: 135-148. |
[140] |
DEMANT J, MUNKSGAARD R, DÉCARY-HÉTU D, et al. Going local on a global platform: a critical analysis of the transformative potential of cryptomarkets for organi-zed illicit drug crime[J]. International Criminal Justice Review, 2018, 28(3): 255-274.
DOI URL |
[141] | BERNARD-JONES E, ONAOLAPO J, STRINGHINI G. BABELTOWER: how language affects criminal activity in stolen Webmail accounts[C]// Proceedings of the Web Confe-rence, Lyon, Apr 21-23, 2018. New York: ACM, 2018: 991-999. |
[142] | SIKARWAR N S. Darknet forensics[J]. International Journal of Emerging Trends & Technology in Computer Science, 2017, 6(4): 77-79. |
[143] | ALOTAIBI M A, ALZAIN M A, SOH B, et al. Computer forensics: dark net forensic framework and tools used for digital evidence detection[J]. International Journal of Commu-nication Networks and Information Security, 2019, 11(3): 424-431. |
[144] | 汤艳君, 安俊霖. 暗网案件的爬虫取证技术研究[J]. 中国刑警学院学报, 2018(5): 115-118. |
TANG Y J, AN J L. Research on crawler forensics techno-logy for darknet cases[J]. Journal of Criminal Investigation Police University of China, 2018(5): 115-118. | |
[145] | GUPTA A, DESAI A U, SAHAI A. Digital forensics of raspberry Pi used for MITM[M]. Cham: Springer, 2020: 123-153. |
[146] | WEIMANN G. Going dark: terrorism on the dark Web[J]. Studies in Conflict & Terrorism, 2016, 39(3): 195-206. |
[147] | WEIDMAN M. Jurisdiction, the Internet, and the good faith exception: controversy over the government’s use of network investigative techniques[J]. Dickinson Law Review, 2018, 122(3): 967-996. |
[148] | XU R, ZHANG Z Y, RAO Z H, et al. Cyberspace surve-ying and mapping: hierarchical model and resource formali-zation[C]// Proceedings of the 2019 IEEE INFOCOM Workshops, Paris, Sep 23, 2019. Piscataway: IEEE, 2019: 68-72. |
[149] | GROTHOFF C, WACHS M, ERMERT M, et al. Toward sec-ure name resolution on the Internet[J]. Computers & Secu-rity, 2018, 77: 694-708. |
[150] | Shodan[EB/OL]. [2022-01-12]. http://www.shodanhq.com. |
[151] | ZoomEye[EB/OL]. [2022-01-12]. http://www.zoomeye.org. |
[152] | Global programme on cybercrime[EB/OL]. (2019-01-10) [2022-01-12]. https://www.unodc.org. |
[153] | Cybercrime repository[EB/OL]. (2019-01-10) [2022-01-12]. http://www.unodc.org. |
[154] | 外交部. 司法协助类条约缔约情况一览表[EB/OL]. (2018-12-22) [2022-01-12]. https://www.fmprc.gov.cn. |
Ministry of Foreign Affairs. List of parties to mutual legal assistance treaties[EB/OL]. (2018-12-22) [2022-01-12]. https://www.fmprc.gov.cn. | |
[155] | CHAN J, HE S, QIAO D, et al. Shedding light on the dark: the impact of legal enforcement on darknet transactions: 19-08[R]. Washington: NET Institute, 2019. |
[156] | MIHELIČ A, MARKELJ B, BERNIK I, et al. Investiga-ting the darknet: limitations in Slovenian legal system[C]// Proceedings of the 12th International Conference on Avai-lability, Reliability and Security, Reggio Calabria, Aug 29-Sep 1, 2017. New York: ACM, 2017: 1-7. |
[157] | HENKEL T. Darknet-die dunkle Seite des Internets?[M]. Wiesbaden: Springer VS, 2020: 175-191. |
[158] | 焦康武. 总体国家安全观视域下我国暗网犯罪应对研究[J]. 犯罪研究, 2017(6): 78-89. |
JIAO K W. Research on China’s response to dark network crime from the perspective of overall national security[J]. Criminal Research, 2017(6): 78-89. |
[1] | 李舟军,张江霄,冯春辉,隋春荣. 电子现金协议研究综述[J]. 计算机科学与探索, 2017, 11(11): 1701-1712. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||