计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (3): 683-691.DOI: 10.3778/j.issn.1673-9418.2010061
收稿日期:
2020-10-23
修回日期:
2021-01-05
出版日期:
2022-03-01
发布日期:
2021-01-28
通讯作者:
+ E-mail: zhiyong.xiao@jiangnan.edu.cn作者简介:
谷鹏辉(1997—),男,河南许昌人,硕士研究生,CCF学生会员,主要研究方向为医学图像处理。基金资助:
Received:
2020-10-23
Revised:
2021-01-05
Online:
2022-03-01
Published:
2021-01-28
About author:
GU Penghui, born in 1997, M.S. candidate, student member of CCF. His research interest is medical image processing.Supported by:
摘要:
针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法。为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络(GCN)和边界细化(BR)替换传统的卷积层;在跳跃连接部分引入改进的位置注意模块(PA)和通道注意模块(CA),目的是增加血管与背景之间的对比度,使网络更好地将血管与背景分割开;此外,为了提高网络的性能,在编码部分的最后一层使用密集卷积网络解决网络过拟合问题,同时为了在一定程度上解决梯度爆炸、梯度消失的问题,在解码部分的每一层使用卷积长短记忆网络提升网络获取特征信息的能力。在公共的数据集DRIVE和CHASE_DB1中进行测试,以敏感性、特异性、准确性、F1-Score和AUC为评价指标,其中准确性和AUC分别达到了96.99%、98.77%和97.51%、99.01%。该算法能有效提高眼底图像血管分割的准确率。
中图分类号:
谷鹏辉, 肖志勇. 改进的U-Net在视网膜血管分割上的应用[J]. 计算机科学与探索, 2022, 16(3): 683-691.
GU Penghui, XIAO Zhiyong. Application of Improved U-Net in Retinal Vessel Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 683-691.
Dataset | Method | Se | Ac | AUC | F1-Score |
---|---|---|---|---|---|
DRIVE | 未预处理 | 81.78 | 96.99 | 98.74 | 82.67 |
预处理 | 83.24 | 96.99 | 98.77 | 82.91 | |
未后处理 | 79.74 | 97.06 | 98.77 | 82.64 | |
后处理 | 83.24 | 96.99 | 98.77 | 82.91 | |
CHASE_DB1 | 未预处理 | 80.12 | 97.48 | 99.00 | 83.48 |
预处理 | 81.49 | 97.51 | 99.01 | 83.55 | |
未后处理 | 79.56 | 97.54 | 99.01 | 83.19 | |
后处理 | 81.49 | 97.51 | 99.01 | 83.55 |
表1 预/后处理结果比较
Table 1 Comparison of pre/post processing results %
Dataset | Method | Se | Ac | AUC | F1-Score |
---|---|---|---|---|---|
DRIVE | 未预处理 | 81.78 | 96.99 | 98.74 | 82.67 |
预处理 | 83.24 | 96.99 | 98.77 | 82.91 | |
未后处理 | 79.74 | 97.06 | 98.77 | 82.64 | |
后处理 | 83.24 | 96.99 | 98.77 | 82.91 | |
CHASE_DB1 | 未预处理 | 80.12 | 97.48 | 99.00 | 83.48 |
预处理 | 81.49 | 97.51 | 99.01 | 83.55 | |
未后处理 | 79.56 | 97.54 | 99.01 | 83.19 | |
后处理 | 81.49 | 97.51 | 99.01 | 83.55 |
Method | DRIVE | CHASE_DB1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Se | Ac | AUC | F1-Score | Se | Ac | AUC | F1-Score | |||
U-Net[ | 75.37 | 95.31 | 97.55 | 81.42 | 82.88 | 95.78 | 97.72 | 77.83 | ||
GCN+BR_U-Net | 82.81 | 96.98 | 98.73 | 82.77 | 81.25 | 97.49 | 98.99 | 83.50 | ||
GCN+BR_ConvLSTM_U-Net | 83.10 | 96.98 | 98.75 | 82.84 | 81.37 | 97.50 | 98.97 | 83.52 | ||
GCN+BR_ConvLSTM_CA+PA_U-Net | 83.24 | 96.99 | 98.77 | 82.91 | 81.49 | 97.51 | 99.01 | 83.55 |
表2 多种改进策略的分割算法的比较
Table 2 Comparison of segmentation algorithms of several improved strategies %
Method | DRIVE | CHASE_DB1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Se | Ac | AUC | F1-Score | Se | Ac | AUC | F1-Score | |||
U-Net[ | 75.37 | 95.31 | 97.55 | 81.42 | 82.88 | 95.78 | 97.72 | 77.83 | ||
GCN+BR_U-Net | 82.81 | 96.98 | 98.73 | 82.77 | 81.25 | 97.49 | 98.99 | 83.50 | ||
GCN+BR_ConvLSTM_U-Net | 83.10 | 96.98 | 98.75 | 82.84 | 81.37 | 97.50 | 98.97 | 83.52 | ||
GCN+BR_ConvLSTM_CA+PA_U-Net | 83.24 | 96.99 | 98.77 | 82.91 | 81.49 | 97.51 | 99.01 | 83.55 |
Method | Year | Se/% | Ac/% | AUC/% | F1-Score/% |
---|---|---|---|---|---|
R2U-Net[ | 2018 | 77.92 | 95.56 | 97.84 | 81.71 |
U-Net[ | 2018 | 75.37 | 95.31 | 97.55 | 81.42 |
LadderNet[ | 2018 | 78.56 | 95.61 | 97.93 | 82.02 |
DEU-Net[ | 2019 | 79.40 | 95.67 | 97.72 | 82.70 |
AG-Net[ | 2019 | 81.00 | 96.92 | 98.56 | N.A |
吴鑫鑫等人[ | 2019 | 81.92 | 96.95 | 97.82 | N.A |
吕晓文等人[ | 2020 | 80.62 | 95.47 | 97.39 | N.A |
AttR2U-Net[ | 2020 | 80.28 | 96.89 | 98.41 | N.A |
Zhang等人[ | 2020 | 81.51 | 96.95 | 98.63 | N.A |
RVSeg-Net[ | 2020 | 81.07 | 96.81 | 98.17 | N.A |
Proposed | 2020 | 83.24 | 96.99 | 98.77 | 82.91 |
表3 DRIVE数据集不同算法的结果
Table 3 Results of different algorithms on DRIVE dataset
Method | Year | Se/% | Ac/% | AUC/% | F1-Score/% |
---|---|---|---|---|---|
R2U-Net[ | 2018 | 77.92 | 95.56 | 97.84 | 81.71 |
U-Net[ | 2018 | 75.37 | 95.31 | 97.55 | 81.42 |
LadderNet[ | 2018 | 78.56 | 95.61 | 97.93 | 82.02 |
DEU-Net[ | 2019 | 79.40 | 95.67 | 97.72 | 82.70 |
AG-Net[ | 2019 | 81.00 | 96.92 | 98.56 | N.A |
吴鑫鑫等人[ | 2019 | 81.92 | 96.95 | 97.82 | N.A |
吕晓文等人[ | 2020 | 80.62 | 95.47 | 97.39 | N.A |
AttR2U-Net[ | 2020 | 80.28 | 96.89 | 98.41 | N.A |
Zhang等人[ | 2020 | 81.51 | 96.95 | 98.63 | N.A |
RVSeg-Net[ | 2020 | 81.07 | 96.81 | 98.17 | N.A |
Proposed | 2020 | 83.24 | 96.99 | 98.77 | 82.91 |
Method | Year | Se/% | Ac/% | AUC/% | F1-Score/% |
---|---|---|---|---|---|
R2U-Net[ | 2018 | 77.56 | 96.34 | 98.15 | 79.28 |
U-Net[ | 2018 | 82.88 | 95.78 | 97.72 | 77.83 |
LadderNet[ | 2018 | 79.78 | 96.56 | 98.39 | 80.31 |
DEU-Net[ | 2019 | 80.74 | 96.61 | 98.12 | 80.37 |
AG-Net[ | 2019 | 81.86 | 97.43 | 98.63 | N.A |
吕晓文等人[ | 2020 | 81.35 | 96.17 | 97.82 | N.A |
RVSeg-Net[ | 2020 | 80.69 | 97.26 | 98.33 | N.A |
Proposed | 2020 | 81.49 | 97.51 | 99.01 | 83.55 |
表4 CHASE_DB1数据集不同算法的结果
Table 4 Results of different algorithms on CHASE_DB1 dataset
Method | Year | Se/% | Ac/% | AUC/% | F1-Score/% |
---|---|---|---|---|---|
R2U-Net[ | 2018 | 77.56 | 96.34 | 98.15 | 79.28 |
U-Net[ | 2018 | 82.88 | 95.78 | 97.72 | 77.83 |
LadderNet[ | 2018 | 79.78 | 96.56 | 98.39 | 80.31 |
DEU-Net[ | 2019 | 80.74 | 96.61 | 98.12 | 80.37 |
AG-Net[ | 2019 | 81.86 | 97.43 | 98.63 | N.A |
吕晓文等人[ | 2020 | 81.35 | 96.17 | 97.82 | N.A |
RVSeg-Net[ | 2020 | 80.69 | 97.26 | 98.33 | N.A |
Proposed | 2020 | 81.49 | 97.51 | 99.01 | 83.55 |
[1] | KANSKI J J, BOWLING B. Clinical ophthalmology: a systematic approach[M]. New York: Elsevier Science Inc., 2011. |
[2] |
STRISCIUGLIO N, AZZOPARDI G, VENTO M, et al. Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters[J]. Machine Vision and Applications, 2016, 27(8): 1137-1149.
DOI URL |
[3] |
LUPASCU C A, TEGOLO D, TRUCCO E. FABC: retinal vessel segmentation using AdaBoost[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5): 1267-1274.
DOI URL |
[4] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolu- tional networks for biomedical image segmentation[C]// LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. |
[5] | 代洋洋, 王宽全. UU-Net: 基于U-Net的U形多路径网络的视网膜血管分割[J]. 哈尔滨工程大学学报, 2020, 41(5): 718-723. |
DAI Y Y, WANG K Q. UU-Net: a U-shaped network with a multi-path structure based on U-Net for vessel segmentation in retinal images[J]. Journal of Harbin Engineering Univer-sity, 2020, 41(5): 718-723. | |
[6] | ZHANG S H, FU H Z, YAN Y G, et al. Attention guided network for retinal image segmentation[C]// LNCS 11764: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 797-805. |
[7] | LIU B, GU L, LU F. Unsupervised ensemble strategy for retinal vessel segmentation[C]// LNCS 11764: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 111-119. |
[8] | LI L Z, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 3656-3665. |
[9] | PENG C, ZHANG X Y, YU G, et al. Large kernel matters— improve semantic segmentation by global convolutional network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1743-1751. |
[10] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154. |
[11] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 8-12 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. |
[12] | 刘辰, 肖志勇, 杜年茂. 改进的卷积神经网络在医学图像分割上的应用[J]. 计算机科学与探索, 2019, 13(9): 1593-1603. |
LIU C, XIAO Z Y, DU N M. Application of improved convolu-tional neural network in medical image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1593-1603. | |
[13] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI URL |
[14] | DENG W W, LING X L, QI Y, et al. Ad click prediction in sequence with long short-term memory networks: an externality-aware model[C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, Jul, 2018. New York: ACM, 2018: 1065-1068. |
[15] | 王毅, 冯小年, 钱铁云, 等. 基于CNN和LSTM深度网络的伪装用户入侵检测[J]. 计算机科学与探索, 2018, 12(4): 575-585. |
WANG Y, FENG X N, QIAN T Y, et al. CNN and LSTM deep network based intrusion detection for malicious users[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 575-585. | |
[16] | 黄偲琪, 张冬梅, 闫博. 基于LSTM与多头注意力机制的恶意域名检测算法[J]. 软件, 2019, 40(2): 83-90. |
HUANG S Q, ZHANG D M, YAN B. A detection algorithm of malicious domain based on LSTM and multi-head attention mechanism[J]. Computer Engineering & Software, 2019, 40(2): 83-90. | |
[17] | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 802-810. |
[18] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[19] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015. |
[20] |
STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509.
DOI URL |
[21] | OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5): 2004-2010. |
[22] | 韩铖惠, 王慧琴, 胡燕. 低对比度火焰图像增强和分割算法研究[J]. 计算机科学与探索, 2018, 12(1): 163-170. |
HAN C H, WANG H Q, HU Y. Enhancement and segmentation algorithm study for low contrast fire image[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 163-170. | |
[23] | 储清翠, 王华彬, 陶亮. 图像的局部自适应Gamma校正[J]. 计算机工程与应用, 2015, 51(7): 189-193. |
CHU Q C, WANG H B, TAO L. Local adaptive Gamma correction method[J]. Computer Engineering and Applications, 2015, 51(7): 189-193. | |
[24] | ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[J]. arXiv:1802.06955, 2018. |
[25] | ZHUANG J T. LadderNet: multi-path networks based on U-Net for medical image segmentation[J]. arXiv:1810.07810, 2018. |
[26] | WANG B, QIU S, HE H G. Dual encoding U-Net for retinal vessel segmentation[C]// LNCS 11764: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019: 84-92. |
[27] | 吴鑫鑫, 肖志勇, 刘辰. 低尺度血管检测在视网膜血管分割中的应用[J]. 计算机科学与探索, 2020, 14(1): 171-180. |
WU X X, XIAO Z Y, LIU C. Application of low-scales vessel detection in retinal vessel segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 171-180. | |
[28] | 吕晓文, 邵枫, 熊义明, 等. 基于双流网络的视网膜血管分割方法[J]. 光学学报, 2020, 40(4): 47-55. |
LV X W, SHAO F, XIONG Y M, et al. Retinal vessel segmen-tation method based on two-stream networks[J]. Acta Optica Sinica, 2020, 40(4): 47-55. | |
[29] | ZHANG S H, FU H Z, XU Y W, et al. Retinal image segmentation with a structure-texture demixing network[C]// LNCS 12265: Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Oct 4-8, 2020. Cham: Springer, 2020: 765-774. |
[30] | WANG W, ZHONG J F, WU H S, et al. RVSeg-Net: an efficient feature pyramid cascade network for retinal vessel segmentation[C]// LNCS 12265: Proceedings of the 23rd Inter-national Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Oct 4-8, 2020. Cham: Springer, 2020: 796-805. |
[1] | 杨知桥, 张莹, 王新杰, 张东波, 王玉. 改进U型网络在视网膜病变检测中的应用研究[J]. 计算机科学与探索, 2022, 16(8): 1877-1884. |
[2] | 谢娟英, 张凯云. XR-MSF-Unet:新冠肺炎肺部CT图像自动分割模型[J]. 计算机科学与探索, 2022, 16(8): 1850-1864. |
[3] | 宋姝洁, 崔振超, 陈丽萍, 陈向阳. 多特征融合神经网络的眼底血管分割算法[J]. 计算机科学与探索, 2021, 15(12): 2401-2412. |
[4] | 李兰兰,张孝辉,牛得草,胡益煌,赵铁松,王大彪. 深度学习在视网膜血管分割上的研究进展[J]. 计算机科学与探索, 2021, 15(11): 2063-2076. |
[5] | 吴鑫鑫,肖志勇,刘辰. 低尺度血管检测在视网膜血管分割中的应用[J]. 计算机科学与探索, 2020, 14(1): 171-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||