计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (3): 683-691.DOI: 10.3778/j.issn.1673-9418.2010061

• 图形图像 • 上一篇    下一篇

改进的U-Net在视网膜血管分割上的应用

谷鹏辉, 肖志勇+()   

  1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 收稿日期:2020-10-23 修回日期:2021-01-05 出版日期:2022-03-01 发布日期:2021-01-28
  • 通讯作者: + E-mail: zhiyong.xiao@jiangnan.edu.cn
  • 作者简介:谷鹏辉(1997—),男,河南许昌人,硕士研究生,CCF学生会员,主要研究方向为医学图像处理。
    肖志勇(1986—),男,河南汤阴人,博士,副教授,CCF会员,主要研究方向为人工智能、机器视觉、图像/视频处理等。
  • 基金资助:
    江苏省自然科学优秀青年基金(BK20190079)

Application of Improved U-Net in Retinal Vessel Segmentation

GU Penghui, XIAO Zhiyong+()   

  1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-10-23 Revised:2021-01-05 Online:2022-03-01 Published:2021-01-28
  • About author:GU Penghui, born in 1997, M.S. candidate, student member of CCF. His research interest is medical image processing.
    XIAO Zhiyong, born in 1986, Ph.D., associate professor, member of CCF. His research interests include artificial intelligence, machine vision, image/video processing, etc.
  • Supported by:
    Natural Science Foundation of Jiangsu Province for Excellent Young Scholars(BK20190079)

摘要:

针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法。为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络(GCN)和边界细化(BR)替换传统的卷积层;在跳跃连接部分引入改进的位置注意模块(PA)和通道注意模块(CA),目的是增加血管与背景之间的对比度,使网络更好地将血管与背景分割开;此外,为了提高网络的性能,在编码部分的最后一层使用密集卷积网络解决网络过拟合问题,同时为了在一定程度上解决梯度爆炸、梯度消失的问题,在解码部分的每一层使用卷积长短记忆网络提升网络获取特征信息的能力。在公共的数据集DRIVE和CHASE_DB1中进行测试,以敏感性、特异性、准确性、F1-Score和AUC为评价指标,其中准确性和AUC分别达到了96.99%、98.77%和97.51%、99.01%。该算法能有效提高眼底图像血管分割的准确率。

关键词: 视网膜血管, U-Net, 边界细化(BR), 位置注意模块(PA), 通道注意模块(CA), 全局卷积网络(GCN)

Abstract:

In order to solve the problems that it is difficult to accurately identify the vascular boundary and the low contrast between the blood vessel and the background in fundus retinal vascular segmentation, an encoder-decoder algorithm is proposed. In order to improve the segmentation ability of the algorithm at the vascular boundary, the global convolutional network (GCN) and boundary refinement (BR) are used to replace the traditional convolution layer in the coding part, and the improved position attention (PA) module and channel attention (CA) module are introduced in the jump connection part. The aim is to increase the contrast between the blood vessels and the background, so that the network can better separate the blood vessels from the background. In addition, in order to improve the performance of the network, the dense convolution network is used in the last layer of the coding part to solve the problem of network overfitting, and in order to solve the problem of gradient explosion and gradient disappearance to a certain extent, in each layer of the decoding part, the convolution long-short memory network is used to improve the ability of the network to obtain feature information. Tested on the common datasets DRIVE and CHASE_DB1, the sensitivity, specificity, accuracy, F1-Score and AUC are used as evaluation indicators, in which the accuracy and AUC reach 96.99%, 98.77% and 97.51%, 99.01%, respectively. This algorithm can effectively improve the accuracy of blood vessel segmentation in fundus image.

Key words: retinal vessels, U-Net, boundary refinement (BR), position attention (PA) module, channel attention (CA) module, global convolutional network (GCN)

中图分类号: