计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (6): 1429-1438.DOI: 10.3778/j.issn.1673-9418.2011010
• 图形图像 • 上一篇
收稿日期:
2020-11-04
修回日期:
2021-01-05
出版日期:
2022-06-01
发布日期:
2021-01-28
通讯作者:
+ E-mail: mczjh@126.com作者简介:
申瑞彩(1993—),女,河北邯郸人,硕士研究生,主要研究方向为深度学习。基金资助:
SHEN Ruicai1,2, ZHAI Junhai1,2,+(), HOU Yingzhen1,2
Received:
2020-11-04
Revised:
2021-01-05
Online:
2022-06-01
Published:
2021-01-28
About author:
SHEN Ruicai, born in 1993, M.S. candidate. Her research interest is deep learning.Supported by:
摘要:
生成对抗网络(GAN)在图像生成方面具有广泛应用,但基于无监督方式与有监督方式的网络生成样本仍有较大差距。为解决生成对抗网络在无监督环境中生成样本多样性差、质量较低以及模型训练时间过长等问题,提出了具有选择性集成学习思想的生成对抗网络模型。将生成对抗网络中的判别网络采用集成判别系统的形式,有效减少了由单判别器判别性能不佳导致判别误差的情况;同时考虑到若集成判别网络均采用统一网络设置,则在模型训练中基判别网络将趋近于一种表现形式,为鼓励判别网络判别结果多样且避免网络陷入雷同,设置拥有不同网络结构的判别网络,并在集成判别网络中引入具有动态调整基判别网络投票权重的多数投票策略,对集成判别网络的判别结果进行投票,有效地促进了模型的收敛且较大减少了实验误差。最后将提出的模型与同方向的模型在不同数据集上使用不同评价指标进行评价,实验结果表明提出的模型无论在生成样本多样性、生成样本质量还是在模型收敛速度上均明显优于几种竞争模型。
中图分类号:
申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438.
SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438.
网络 | Con1 | Con2 | Con3 | Con4 |
---|---|---|---|---|
EGAN-3 | (28,28,1) | (14,14,32/16/8) | (7,7,64/32/16) | (4,4,128/64/32) |
EGAN-4 | (28,28,1) | (14,14,64/32/16/8) | (7,7,128/64/32/16) | (4,4,256/128/64/32) |
EGAN-5 | (28,28,1) | (14,14,128/64/32/16/8) | (7,7,256/128/64/32/16) | (4,4,512/256/128/64/32) |
EGAN-6 | (28,28,1) | (14,14,256/128/64/32/16/8) | (7,7,512/256/128/64/32/16) | (4,4,1 024/512/256/128/64/32) |
表1 针对MNIST数据集的各网络卷积层配置
Table 1 Convolution layers configuration of each discriminant network for MNIST dataset
网络 | Con1 | Con2 | Con3 | Con4 |
---|---|---|---|---|
EGAN-3 | (28,28,1) | (14,14,32/16/8) | (7,7,64/32/16) | (4,4,128/64/32) |
EGAN-4 | (28,28,1) | (14,14,64/32/16/8) | (7,7,128/64/32/16) | (4,4,256/128/64/32) |
EGAN-5 | (28,28,1) | (14,14,128/64/32/16/8) | (7,7,256/128/64/32/16) | (4,4,512/256/128/64/32) |
EGAN-6 | (28,28,1) | (14,14,256/128/64/32/16/8) | (7,7,512/256/128/64/32/16) | (4,4,1 024/512/256/128/64/32) |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.819±0.314 | 1.916±0.263 | 2.010±0.206* | 1.852±0.316 |
均值方式 | 1.736±0.247 | 1.788±0.308 | 1.809±0.207 | 1.503±0.401 |
表2 不同集成模型在两种集成策略下的IS得分
Table 2 IS score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.819±0.314 | 1.916±0.263 | 2.010±0.206* | 1.852±0.316 |
均值方式 | 1.736±0.247 | 1.788±0.308 | 1.809±0.207 | 1.503±0.401 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 3.872 | 3.360 | 3.027* | 3.618 |
均值方式 | 4.304 | 4.588 | 4.562 | 4.621 |
表3 不同集成模型在两种集成策略下的FID得分
Table 3 FID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 3.872 | 3.360 | 3.027* | 3.618 |
均值方式 | 4.304 | 4.588 | 4.562 | 4.621 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 31.65±1.52 | 30.42±1.49 | 29.98±1.46* | 31.21±1.40 |
均值方式 | 34.51±1.72 | 34.33±1.32 | 34.21±1.49 | 35.02±1.54 |
表4 不同集成模型在两种集成策略下的KID得分
Table 4 KID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 31.65±1.52 | 30.42±1.49 | 29.98±1.46* | 31.21±1.40 |
均值方式 | 34.51±1.72 | 34.33±1.32 | 34.21±1.49 | 35.02±1.54 |
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.201±0.040 | 4.351 | 50.96±1.73 |
DCGAN(集成) | 1.572±0.310 | 3.780 | 37.64±1.49 |
GMAN | 1.602±0.430 | 3.726 | 36.04±1.40 |
EGAN-5 | 2.010±0.206* | 3.027* | 29.98±1.46* |
表5 不同模型在三种评价指标下的得分情况
Table 5 Score of different models under three evaluation indices
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.201±0.040 | 4.351 | 50.96±1.73 |
DCGAN(集成) | 1.572±0.310 | 3.780 | 37.64±1.49 |
GMAN | 1.602±0.430 | 3.726 | 36.04±1.40 |
EGAN-5 | 2.010±0.206* | 3.027* | 29.98±1.46* |
层数 | Con2 | Con3 | Con4 | Con5 | Con6 |
---|---|---|---|---|---|
3 | (80,64,16/8/4) | (40,32,32/16/8) | (20,16,64/32/16) | (10,8,128/64/32) | (5,4,256/128/64) |
4 | (80,64,32/16/8/4) | (40,32,64/32/16/8) | (20,16,128/64/32/16) | (10,8,256/128/64/32) | (5,4,512/256/128/64) |
5 | (80,64,64/32/16/8/4) | (40,32,128/64/32/16/8) | (20,16,256/128/64/32/16) | (10,8,512/256/128/64/32) | (5,4,1 024/512/256/128/64) |
6 | (80,64,128/64/32/16/8/4) | (40,32,256/128/64/32/16/8) | (20,16,512/256/128/64/32/16) | (10,8,1 024/512/256/128/64/32) | (5,4,512/256/256/128/128/64) |
表6 针对CelebA数据集的各网络卷积层配置
Table 6 Convolution layers configuration of each discriminant network for CelebA dataset
层数 | Con2 | Con3 | Con4 | Con5 | Con6 |
---|---|---|---|---|---|
3 | (80,64,16/8/4) | (40,32,32/16/8) | (20,16,64/32/16) | (10,8,128/64/32) | (5,4,256/128/64) |
4 | (80,64,32/16/8/4) | (40,32,64/32/16/8) | (20,16,128/64/32/16) | (10,8,256/128/64/32) | (5,4,512/256/128/64) |
5 | (80,64,64/32/16/8/4) | (40,32,128/64/32/16/8) | (20,16,256/128/64/32/16) | (10,8,512/256/128/64/32) | (5,4,1 024/512/256/128/64) |
6 | (80,64,128/64/32/16/8/4) | (40,32,256/128/64/32/16/8) | (20,16,512/256/128/64/32/16) | (10,8,1 024/512/256/128/64/32) | (5,4,512/256/256/128/128/64) |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 2.716±0.630 | 3.242±0.512 | 3.413±0.426* | 2.967±0.583 |
均值方式 | 2.391±0.232 | 2.502±0.374 | 2.401±0.246 | 2.304±0.913 |
表7 不同集成模型在两种集成策略下的IS得分
Table 7 IS score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 2.716±0.630 | 3.242±0.512 | 3.413±0.426* | 2.967±0.583 |
均值方式 | 2.391±0.232 | 2.502±0.374 | 2.401±0.246 | 2.304±0.913 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.381 | 1.196 | 1.094* | 1.265 |
均值方式 | 1.649 | 1.588 | 1.701 | 1.647 |
表8 不同集成模型在两种集成策略下的FID得分
Table 8 FID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 1.381 | 1.196 | 1.094* | 1.265 |
均值方式 | 1.649 | 1.588 | 1.701 | 1.647 |
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 0.402±0.496 | 0.204±0.451 | 0.196±0.216* | 0.365±0.401 |
均值方式 | 0.594±0.824 | 0.571±0.763 | 0.497±0.801 | 0.734±0.671 |
表9 不同集成模型在两种集成策略下的KID得分
Table 9 KID score of different integration models under two integration strategies
集成策略 | EGAN-3 | EGAN-4 | EGAN-5 | EGAN-6 |
---|---|---|---|---|
多数投票 | 0.402±0.496 | 0.204±0.451 | 0.196±0.216* | 0.365±0.401 |
均值方式 | 0.594±0.824 | 0.571±0.763 | 0.497±0.801 | 0.734±0.671 |
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.561±0.412 | 2.406 | 1.473±0.504 |
DCGAN(集成) | 2.013±0.892 | 1.998 | 0.996±0.291 |
GMAN | 2.541±0.340 | 1.942 | 0.983±0.274 |
EGAN-5 | 3.413±0.426* | 1.094* | 0.196±0.216* |
表10 不同模型在三种评价指标下的得分情况
Table 10 Score of different models under three evaluation indices
模型 | IS | FID | KID |
---|---|---|---|
GAN(集成) | 1.561±0.412 | 2.406 | 1.473±0.504 |
DCGAN(集成) | 2.013±0.892 | 1.998 | 0.996±0.291 |
GMAN | 2.541±0.340 | 1.942 | 0.983±0.274 |
EGAN-5 | 3.413±0.426* | 1.094* | 0.196±0.216* |
[1] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Proces-sing Systems, Montréal, Dec 8-13, 2014. Cambridge: MIT Press, 2014: 2672-2680. |
[2] | DURUGKER I, GEMP I, MAHADEVAN S. Generative multi-adversarial networks[EB/OL]. [2018-07-04]. https://open-review.net/forum?id=Byk-VI9eg . |
[3] | 兰远东, 曾树洪. 动态加权投票的多分类器聚合[J]. 现代计算机(专业版), 2014(2): 8-11. |
LAN Y D, ZENG S H. Multiple classifier fusion with dyna-mic weighted voting[J]. Modern Computer, 2014(2): 8-11. | |
[4] |
SCHUTZ B, ILYAS S, LE K, et al. Nanoparticle arrays having directed hybrid topology via covalent self-assembly of iron oxide and silica nanoparticles[J]. ACS Applied Nano Materials, 2020, 3(6): 5936-5943.
DOI URL |
[5] |
CHAKRABORTY S, ROY M. A multi-level weighted trans-formation based neuro-fuzzy domain adaptation technique using stacked auto-encoder for land-cover classification[J]. International Journal of Remote Sensing, 2020, 41(17): 6831-6857.
DOI URL |
[6] |
ZORAN J, NICOLA C, PRATS D B, et al. A highly parame-terizable framework for conditional restricted Boltzmann machine based workloads accelerated with FPGAs and OpenCL[J]. Future Generation Computer Systems, 2020, 104: 201-211.
DOI URL |
[7] |
ZHENG J, SU Y X, ZHANG D H, et al. Velocity forecasts using a combined deep learning model in hybrid electric vehicles with V2V and V2I communication[J]. Science China Technological Sciences, 2020, 63(1): 55-64.
DOI URL |
[8] |
HAN Z, TAO X, HONGSHENG L, et al. StackGAN++: rea-listic image synthesis with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1947-1964.
DOI URL |
[9] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial net-works[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251. |
[10] | HOFFMAN J, TZENG E, PARK T, et al. Cycle-consistent adversarial domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2962-2971. |
[11] | HUANG H, LIU M Y, BELONGIE S J, et al. Multimodal unsupervised image-to-image translation[C]// LNCS 11207: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 179-196. |
[12] | RADFOD A, METZ L, CHINTALA S. Unsupervised rep-resentation learning with deep convolutional generative ad-versarial networks[J]. Computer Science, 2015, 47(8): 169-183. |
[13] | CHEN X, DUAN Y, HOUTHOOFT R, et al. Info-GAN: in-terpreter representation learning by information maximi-zing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran As-sociates, 2016: 2172-2180. |
[14] | 方敏. 集成学习的多分类器动态融合方法研究[J]. 系统工程与电子技术, 2006, 28(11): 1759-1761. |
FANG M. Study of integration method for multiple classifiers on ensemble learning[J]. Systems Engineering and Elec-tronics, 2006, 28(11): 1759-1761. | |
[15] | LIU Y M, TUZEL O. Coupled generative adversarial net-works[C]// Proceedings of the 30th International Confe-rence on Neural Information Processing Systems, Barce-lona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 469-477. |
[16] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 171-196. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua Uni-versity Press, 2016: 171-196. | |
[17] | 郑哲, 胡庆浩, 刘青山, 等. 量化权值激活的生成对抗网络[J]. 计算机科学, 2020, 47(5): 144-148. |
ZHENG Z, HU Q H, LIU Q S, et al. Quantizing weights and activations in generative adversarial networks[J]. Com-puter Science, 2020, 47(5): 144-148. | |
[18] | 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332. |
WANG K F, GOU C, DUAN Y J, et al. Generative adver-sarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332. | |
[19] | 张春霞, 张讲社. 选择性集成学习算法综述[J]. 计算机学报, 2011, 34(8): 1399-1410. |
ZHANG C X, ZHANG J S. A survey of selective ensemble learning algorithms[J]. Chinese Journal of Computers, 2011, 34(8): 1399-1410.
DOI URL |
[1] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[2] | 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. |
[3] | 姜艺, 胥加洁, 柳絮, 朱俊武. 边缘指导图像修复算法研究[J]. 计算机科学与探索, 2022, 16(3): 669-682. |
[4] | 王曙燕, 金航, 孙家泽. GAN图像对抗样本生成方法[J]. 计算机科学与探索, 2021, 15(4): 702-711. |
[5] | 费建伟,夏志华,余佩鹏,戴昀书. 人脸合成技术综述[J]. 计算机科学与探索, 2021, 15(11): 2025-2047. |
[6] | 王富平, 李文楼, 刘颖, 卢津, 公衍超. 结合边缘信息和门卷积的人脸修复算法[J]. 计算机科学与探索, 2021, 15(1): 150-162. |
[7] | 彭晏飞,高艺,杜婷婷,桑雨,訾玲玲. 生成对抗网络的单图像超分辨率重建方法[J]. 计算机科学与探索, 2020, 14(9): 1612-1620. |
[8] | 李广丽,滑瑾,袁天,朱涛,邬任重,姬东鸿,张红斌. 基于用户偏好挖掘生成对抗网络的推荐系统[J]. 计算机科学与探索, 2020, 14(5): 803-814. |
[9] | 武随烁,杨金福,单义,许兵兵. 使用孪生注意力机制的生成对抗网络的研究[J]. 计算机科学与探索, 2020, 14(5): 833-840. |
[10] | 李俊杰,王茜. 感知相似的图像分类对抗样本生成模型[J]. 计算机科学与探索, 2020, 14(11): 1930-1942. |
[11] | 梁俊杰,韦舰晶,蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17. |
[12] | 商显震,韩萌,孙毓忠,孙宇宁,陈旭,胡满满,梅御东. 融合生成对抗网络和朴素贝叶斯皮肤病诊断方法[J]. 计算机科学与探索, 2019, 13(6): 1005-1015. |
[13] | 许欧阳,李光辉. 萤火虫优化和随机森林的WSN异常数据检测[J]. 计算机科学与探索, 2018, 12(10): 1633-1644. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||